A Back Propagation Artificial Neural Network Applied to Body Constitution in Traditional Chinese Medicine Modeling

2013 ◽  
Vol 659 ◽  
pp. 123-127
Author(s):  
Zhi Biao Li

In this paper, artificial neural network architecture is introduced to predict the Yin-Yang index of body constitution in traditional Chinese medicine (BCTCM). With pre-processing the inputting data by the median, the collected data is more consistent with the exact value of the characteristic parameters of BCTCM. Quasi-Newton algorithm is used to train the network model to accelerate the convergence speed of network training. Experiments show that, the result showed that they had good prediction accuracies for BCTTCM. The mean absolute error for 10 true measured points was 0.034. Therefore, the prediction model of BCTCM Yin-Yang index with BP neural network is doable.

2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Anson Chui Yan Tang ◽  
Joanne Wai Yee Chung ◽  
Thomas Kwok Shing Wong

In view of lacking a quantifiable traditional Chinese medicine (TCM) pulse diagnostic model, a novel TCM pulse diagnostic model was introduced to quantify the pulse diagnosis. Content validation was performed with a panel of TCM doctors. Criterion validation was tested with essential hypertension. The gold standard was brachial blood pressure measured by a sphygmomanometer. Two hundred and sixty subjects were recruited (139 in the normotensive group and 121 in the hypertensive group). A TCM doctor palpated pulses at left and right cun, guan, and chi points, and quantified pulse qualities according to eight elements (depth, rate, regularity, width, length, smoothness, stiffness, and strength) on a visual analog scale. An artificial neural network was used to develop a pulse diagnostic model differentiating essential hypertension from normotension. Accuracy, specificity, and sensitivity were compared among various diagnostic models. About 80% accuracy was attained among all models. Their specificity and sensitivity varied, ranging from 70% to nearly 90%. It suggested that the novel TCM pulse diagnostic model was valid in terms of its content and diagnostic ability.


2015 ◽  
Vol 2 (1) ◽  
pp. 28
Author(s):  
Dahriani Hakim Tanjung

Penelitian ini bertujuan untuk memprediksi penyakit asma menggunakan teknik pengenalan pola yaitu jaringan saraf tiruan dengan metode backpropagation. Data penilaian asma mengacu pada riwayat penyakit asma seseorang. Jaringan saraf tiruan dilakukan dengan menentukan jumlah unit untuk setiap lapisan dengan fungsi aktivasi sigmoid biner. Pengujian dilakukan menggunakan perangkat lunak matlab yang diuji dengan beberapa bentuk arsitektur jaringan. Arsitektur dengan konfigurasi terbaik terdiri dari 18 lapisan masukan, 8 lapisan tersembunyi dan 4 lapisan keluaran dengan nilai learning rate sebesar 0.5, nilai toleransi error 0.001, menghasilkan maksimal epoch 4707 dan MSE 0.00100139. MSE berada di bawah nilai error yaitu 0.001, Parameter tersebut dipilih menjadi parameter terbaik karena menghasilkan jumlah iterasi yang memiliki nilai akurasi MSE yang cukup baik, karena nilai MSE paling kecil dari arsitektur yang lain serta nilai MSE dibawah dari nilai error yang ditentukan. Sigmoid Biner Fungsi ini digunakan untuk jaringan saraf yang dilatih dengan menggunakan metode backpropagation. Fungsi sigmoid memiliki nilai range 0 sampai 1. Oleh karena itu, fungsi ini sering digunakan untuk jaringan saraf yang membutuhkan nilai output yang terletak pada interval 0 sampai 1.This study aims to predict asthma using pattern recognition techniques namely artificial neural network with back propagation method. Asthma assessment data refers to a person's history of asthma. Artificial neural network is done by determining the number of units for each layer with binary sigmoid activation function. Testing is done using matlab software being tested with some form of network architecture. Architecture with the best configuration consists of 18 layers of input, 8 hidden layer and output layer 4 with a value of learning rate of 0.5, the error tolerance value 0001, 4707 and resulted in the maximum epoch MSE .00100139. MSE is under the error value is 0.001, the parameter is chosen to be the best parameters for generating the number of iterations that have an accuracy value of MSE is quite good, because the smallest MSE value than other architectures as well as the value of the MSE under a specified error value. Binary sigmoid function is used for neural network trained using the backpropagation method. Sigmoid function has a value in the range 0 to 1. Therefore, this function is often used for neural networks that require output value lies in the interval 0 to 1.


Author(s):  
Anna Triwijayanti K. ◽  
Hadi Suwastio ◽  
Rini Damayanti

Iridology as a way of revealing human organs and tissues conditions is done by iridologist by taking the image of both irises of the patients. This can be done by using a digital camera and observe each iris on the LCD display or connect the camera to a computer or a television set and observe it through the display. Research on computerized iridology has been performed before by using artificial neural network of back propagation, which is a kind of supervised learning algorithm, as the classifier [13]. Such system should be able to retain its stability while still being plastic enough to adapt to arbitrarily input patterns. Adaptive Resonance Theory (ART), another kind of artificial neural network which uses unsupervised learning algorithm, has some important traits, such as real-time learning, self-stabilizing memory in response to arbitrarily many input patterns, and fast adaptive search for best match of input-to-stored patterns [9]. That way, ART architecture is expected to be the best stable and adaptable solution in changing environment of pattern recognition. In this research, the lung disorders detection is simply designed through the steps of segmentation, extraction of color variations, transformation of lung and pleura representation area in iris image to binary form as the input of ART 1, and pattern recognition by ART 1 neural network architecture. With 32 samples and 4 nodes of output layer of ART1, the system is able to determine the existences of the four stadiums of lung disorders (acute, subacute, chronic and degenerative) in relatively short time process (approximately 1.8 to 3.2 seconds) with the accuracy of stadium recognition 91.40625% by applying the vigilance parameter value of 0.4.Keywords: iridology, lung, pleura, segmentation, ART 1 neural network


2010 ◽  
Vol 39 ◽  
pp. 555-561 ◽  
Author(s):  
Qing Hua Luan ◽  
Yao Cheng ◽  
Zha Xin Ima

The establishing of a precise simulation model for runoff prediction in river with several tributaries is the difficulty of flood forecast, which is also one of the difficulties in hydrologic research. Due to the theory of Artificial Neural Network, using Back Propagation algorithm, the flood forecast model for ShiLiAn hydrologic station in Minjiang River is constructed and validated in this study. Through test, the result shows that the forecast accuracy is satisfied for all check standards of flood forecast and then proves the feasibility of using nonlinear method for flood forecast. This study provides a new method and reference for flood control and water resources management in the local region.


Sign in / Sign up

Export Citation Format

Share Document