The Synthesis of Lithium Aluminate Materials and its Performance of CO2 Absorption

2013 ◽  
Vol 669 ◽  
pp. 115-118 ◽  
Author(s):  
Yin Jie Wang ◽  
Ji Ping Liu ◽  
Mei Xiu Kan ◽  
Ze Quan Liu

Use Nanoscale α-Al2O3 as raw materials, prepared by high temperature solid state reaction, we produced the Lithium Aluminate (Li5AlO4) which can directly absorb CO2 at a temperature between 450°C and 650°C. Respectively use the method of scanning electron microscopy (SEM)、X-ray powder diffractometer (XRD) and thermogravimetric analyzer (TG) for the morphology、structure and the performance of CO2 absorption analysises. The results show that the synthesized Lithium Aluminate (Li5AlO4) materials have a performance of CO2 absorption.

2021 ◽  
Vol 325 ◽  
pp. 181-187
Author(s):  
Martin Nguyen ◽  
Radomír Sokolář

This article examines the influence of fly ash on corrosion resistance of refractory forsterite-spinel ceramics by molten iron as a corrosive medium. Fly ash in comparison with alumina were used as raw materials and sources of aluminium oxide for synthesis of forsterite-spinel refractory ceramics. Raw materials were milled, mixed in different ratios into two sets of mixtures and sintered at 1550°C for 2 hours. Samples were characterized by X-ray diffraction analysis and thermal dilatometric analysis. Crucibles were then made from the fired ceramic mixtures and fired together with iron at its melting point of 1535°C for 5 hours. The corrosion resistance was evaluated by scanning electron microscopy on the transition zones between iron and ceramics. Mixtures with increased amount of spinel had higher corrosion resistance and mixtures with fly ash were comparable to mixtures with alumina in terms of corrosion resistance and refractory properties.


2013 ◽  
Vol 652-654 ◽  
pp. 1818-1821
Author(s):  
Zhen Fei Liu ◽  
Wei Qiang Wang ◽  
Min Qi

A porous titania (TiO2) coating with vermiform slots was prepared on the Ti substrate through micro-arc oxidation (MAO) treatment using sodium tetraborate as electrolyte. Morphologies and phase structure were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Results show that the rutile phase increases and anatase decreases gradually with increasing MAO time. The electrolyte of sodium tetraborate has significant influence on the formation of vermiform coatings, which determine the corrosive patterning in the first stage during MAO processing. The evolution of vermiform morphology is proposed as followed: some corrosive pores appear on the surface before arcing; afterward, the adjacent micropores in the dense regions link each other due to the high temperature result from continuous arc action; then, the micropores grow up to big pits and combine with each other with increasing MAO treating time; finally, the vermiform morphology forms on the surface of Ti metal.


2012 ◽  
Vol 602-604 ◽  
pp. 526-529
Author(s):  
Qing Wang ◽  
Lin Zhang ◽  
Ya Hui Zhang

Biomorphic TiO2 was prepared by high temperature pyrolysis and a modified sol-gel route. The morphology and microstructure of TiO2 samples were characterized by scanning electron microscopy. The phase composition of the resulting sample was analyzed by X-ray diffraction. The results suggest that the biomorphic TiO2 mainly consists of rutile TiO2, and replicates the shape and part microstructure of the carbon template.


2016 ◽  
Vol 680 ◽  
pp. 257-260
Author(s):  
Meng Yun Dong ◽  
Cheng Zhang ◽  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Dan Yu Jiang

CaF2 nano-power was prepared by direct precipitation methods with Ca(NO3)2 and KF as raw materials. The influences of presintering temperature and sintering temperature on the particle size and distribution of CaF2 nano-power were studied by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). This study provided an experimental method for preparation of CaF2 nano-power. The results show that the best presintering temperature of CaF2 nano-power is 500°C and the best sintering temperature of CaF2 ceramic is 900°C.


2012 ◽  
Vol 512-515 ◽  
pp. 1023-1027
Author(s):  
Ran Fang Zuo ◽  
Gao Xiang Du ◽  
Le Fu Mei ◽  
Wei Juan Guo ◽  
Jing Hui Liao

The main objective of this paper was to investigate the addition of iron tailing sintering brick production, in the presence of clay, coal refuses and bentonite. Mixtures containing raw materials of sintering brick and iron tailings were prepared at different proportions (up to 55 wt %), fired at 980°C. Freeze/thaw durability, drying and firing shrinkages were investigated as well as the loss on ignition, bulk density and compressive strength of the fired samples. Their mechanical and microstructure properties were also investigated by differential thermal analysis (DTA/TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that compressive strengths of the brick samples are higher than that required by the standards MU15 of GB5101-2003, up to 21.79Mpa with 40% iron tailings corresponding to its higher bulk density completely. Moreover, the results showed that it has such advantages as no lime blowing, uniform color, good freeze/thaw resistance and slight universal frost.


2014 ◽  
Vol 1081 ◽  
pp. 313-317
Author(s):  
Yan Wen Lu ◽  
Yu Ge ◽  
Yue Feng Tang

A one-step carbon thermal method was used to prepare LiFePO4/C particles by using normal Fe2O3, LiH2PO4and sucrose as raw materials. The effect of H2content in the sintering atmosphere of N2on the morphology and the electrochemical performance were investigated. LiFePO4/C materials were characterized by X-ray diffraction, scanning electron microscopy and the elemental analyzer. The results show that the precursor sintering under the atmosphere of 8%H2+N2exhibits the highest electrochemical capacity (162.3 mAh/g at 0.1C) .


2012 ◽  
Vol 1372 ◽  
Author(s):  
L. Ortiz-Martínez ◽  
M. Torres-Rodríguez ◽  
M. Gutiérrez-Arzaluz

ABSTRACTIn this work, the synthesis of dense Pd/α–Al2O3 and Pd-Ag/α–Al2O3 ceramic composite membranes was done through the sequential electroless plating technique of Pd and Ag. The precursors are solutions of PdCl2 and AgNO3 and N2H4 salts, as reducing agent. The membranes were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). The permeation tests of H2 and N2 was carried out at 20 psi of pressure and at 25°C, resulted πH2=5.2x10-9 mol H2/m2·s·Pa and πN2=8.2x10-10 mol N2/m2·s·Pa.


2021 ◽  
pp. 1-22
Author(s):  
Alicia Fernández Díaz ◽  
Ana María Bejarano Osorio ◽  
Macarena Bustamante-Álvarez ◽  
Dolores Julia Yusá Marco ◽  
Sofía Vicente Palomino ◽  
...  

Abstract During the excavations carried out since 2017 in the House of the Mithraeum (Casa del Mitreo) in Mérida a collection of paintings was recovered from Room 11, which had been abandoned in the late 3rd c. CE after a fire. The remains included fragments of molded stucco cornices, with braided esparto grass ropes on the reverse that were used to attach them to the ceiling. This article presents the descriptive and technical study of the finds and their compositional analysis using scanning electron microscopy and X-ray diffraction. Data resulting from these analyses allow us to understand the fragments’ composition and technical execution, and even the possible circulation of workshops and raw materials.


2012 ◽  
Vol 430-432 ◽  
pp. 521-524
Author(s):  
Feng Feng Li ◽  
Jiao Du ◽  
Ming Xi Zhang ◽  
Wei Chao Yang ◽  
Yi Shen

Cordierite–mullite composite crucibles were prepared via high-temperature solid-state process by using burn talc, datong soil, knar clay, bentonite, quartz, feldspar and alumina as raw materials, waste porcelain powder as skeletal material. The main influencing factors such as the raw materials radio and calcination temperature were discussed. The microstructure of the sintered sample was analyzed with X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The results show that the optimal prescription was sample II (13.34 wt% of burn talc, 10.496wt% datong soil, 40.65% knar clay, 15.00wt% waste porcelain powder,10.34wt% bentonite, 2.17wt% feldspar, 1.61wt% quartz, and 6.394wt% of alumina). The optimal sintered temperature was 1380°C and the holding time was 3 hours.


2016 ◽  
Vol 30 (27) ◽  
pp. 1650305 ◽  
Author(s):  
Hong Li ◽  
Yinhai Wang ◽  
Lei Li ◽  
Haiju Huang ◽  
Hui Zhao ◽  
...  

Zn2GeO4:Mn[Formula: see text],[Formula: see text]Eu[Formula: see text] and Zn2GeO4:Mn[Formula: see text] powders were synthesized by a high-temperature solid-state reaction. X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structures and morphologies of the synthesized powders, respectively. The photocatalytic properties and long persistent luminescence performance were improved by Eu[Formula: see text] doping. Thermoluminescent (TL) curves showed that the trap concentration in the material was increased with Eu[Formula: see text] doping, which formed trap centers in Zn2GeO4:Mn[Formula: see text]. The trap centers can capture the electrons or holes and subsequently increase the separation of photogenerated electrons and holes by suppressing the recombination of captured electrons and holes; thus, resulting in an improved photocatalytic activity and a prolonged persistent luminescence. The present strategy may be used as a general method to improve the photocatalytic activity and persistent luminescence.


Sign in / Sign up

Export Citation Format

Share Document