Electrical Properties of Pulsed Laser Deposited ZnO Thin Films

2009 ◽  
Vol 67 ◽  
pp. 121-125
Author(s):  
Chattopadhyay Sourav ◽  
Kumar Nath Tapan

Epitaxial Single-crystal ZnO thin films have been grown on c-plane (0001) sapphire by Pulsed Laser Deposition process at different substrate temperatures (300 – 800 °C) with 10-1 mbar oxygen pressure. The thicknesses of the films have been varied by varying number of pulses with a repetition rate of 10 pulse/sec. It is found that the sheet resistivity of ZnO thin films grown on c-plane sapphires are in the order of 10-2 Ω-cm and it increases with increasing substrate temperatures and film thickness. The carrier concentrations and Hall mobility are found to be in the order of 1017 cm-3 and ~195 cm2/V-s, respectively. The Hall mobility slightly decreases with increase of substrate temperature and thickness of the films. It is also found that the ZnO films are structurally uniform and well oriented with perfect wurtzite structure with c/a ratio 5.1. We have also deposited non-epitaxial ZnO films on (100) p-Silicon substrates at the same conditions. From HR FE-SEM micrographs, surface morphology of ZnO films grown at lower substrate temperature are found to be uniform compared to the films grown at higher temperatures showing non-uniformity and misoriented wurtzite structures. However, the surface morphology of ZnO flims grown epitaxially on (0001) sapphire are found to be more uniform and it does not change much with growth temperature. The resistivity of the films grown on p-Silicon at higher temperatures is in the order of 103 Ω-cm whereas films grown at lower substrate temperatures show comparatively lower resistivities (~ 102 Ω-cm). From the recorded UV-Visible absorption spectrum the band gap of the film has been estimated to be 3.38 eV.

2018 ◽  
Vol 159 ◽  
pp. 02031 ◽  
Author(s):  
Iping Suhariadi ◽  
Masaharu Shiratani ◽  
Naho Itagaki

We study the surface morphology of ZnO thin films deposited by nitrogen mediated crystallization method utilizing atomic force microscopy as a function of nitrogen flow rates. Initially, the surface morphology of ZnO thin film deposited without nitrogen exhibits a bumpy surface with spiky grains where the skewness and kurtosis values were found to be 0.48 and 4.80, respectively. By addition of small amount of nitrogen, the skewness and kurtosis values of the films significantly decrease associated with a flatter topography. Further increase in nitrogen flow rate to 16 sccm has roughened the surface shown mainly by the increase in kurtosis value to be 3.30. These results indicate that the addition of small amount of nitrogen during deposition process has enhanced the adatoms migration on the surface resulting in a superior film with a larger grain size. Two-dimensional power spectral density analysis reveals that all the films have self-affine fractal geometry with total fractal values in the range of 2.14 to above 3.00.


2010 ◽  
Vol 25 (10) ◽  
pp. 1936-1942 ◽  
Author(s):  
Deuk Ho Yeon ◽  
Bhaskar Chandra Mohanty ◽  
Yeon Hwa Jo ◽  
Yong Soo Cho

An effective way to prepare a robust CuInSe2 (CIS) target for subsequent vapor depositions of thin films is suggested in this work. The technique involves addition of excess Se to presynthesized CIS powder followed by cold pressing and sintering at a temperature as low as 300 °C. Phase-pure chalcopyrite CIS films were prepared at a substrate temperature of 300 °C from targets that contained different amounts of excess Se. The average size of particulates, typical of the pulsed laser deposition process, and their surface coverage decreased with increasing Se content up to 50 wt% in the targets. Films grown from the target with 50 wt% excess Se exhibited a hole concentration of ˜3 × 1019 cm−3 and a Hall mobility of ˜2 cm2/Vs. With the decrease of substrate temperature to room temperature, the resistivity increased from 1.1 × 10−1 to ˜7.5 × 108 Ω·cm, which is attributed to the potential contributions of Se interstitials, CuIn, and VIn defects.


2007 ◽  
Vol 14 (05) ◽  
pp. 873-878 ◽  
Author(s):  
HYUN KYOUNG YANG ◽  
JONG WON CHUNG ◽  
BYUNG KEE MOON ◽  
BYUNG CHUN CHOI ◽  
JUNG HYUN JUNG ◽  
...  

Surface morphology and crystallinity of YVO 4: Sm 3+ thin films have an influence on the photoluminescence characteristics. The YVO 4: Sm 3+ films have been deposited on Al 2 O 3 (0001) substrates using pulsed laser deposition method. The films were grown at the various substrate temperatures changing from 500 to 700°C. The crystallinity and surface morphology of the films were investigated using X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The results of XRD showed that YVO 4: Sm 3+ films had a zircon structure and AFM study revealed that the films consisted of homogeneous grains ranging from 100 to 400 nm depending on the deposition conditions. The photoluminescence spectra were measured at room temperature and the emitted radiation was dominated by the red emission peak at 620 nm radiated from the transition of 5 D 0-7 F 2. The crystallinity, surface morphology, and photoluminescence spectra of thin-film phosphors were highly dependent on the substrate temperature. The surface roughness and photoluminescence intensity of the films showed similar behavior as a function of substrate temperature.


2012 ◽  
Vol 626 ◽  
pp. 25-28 ◽  
Author(s):  
A. Ismail ◽  
Mat Johar Abdullah

AlN doped ZnO thin films were prepared on glass and Si (100) substrates by RF sputtering. For AlN doped ZnO at RF powers of 200 W (ZnO target) and 200W (AlN target), the ZnO (002) peak showed the highest intensity at the substrate temperature of 400˚ C. The prepared films showed good transmission of above 72 % in the visible range. The calculated values of energy band gaps were in the range (3.42 eV - 3.54 eV) for the films prepared at different substrate temperatures.


2006 ◽  
Vol 514-516 ◽  
pp. 1029-1033
Author(s):  
Eugenio Luís Solla ◽  
Jacinto P. Borrajo ◽  
Pio González ◽  
Julia Serra ◽  
Stefano Chiussi ◽  
...  

The bioactive properties of hydroxyapatite (HA) are well known in the implant industry and coatings of HA have been used to enhance the adhesion of living tissue to metal prostheses. Pulsed laser deposition (PLD) in a water vapour atmosphere is an appropriate method for the production of crystalline HA coatings. In this work the effect of RF plasma on thin films of HA grown by PLD at different substrate temperatures has been studied. The physicochemical properties of the films were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), showing that the incorporation of RF discharge in the deposition chamber can lead to changes in the crystallinity and deposition rate of the films but substrate temperature still plays the most important role.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 825-829 ◽  
Author(s):  
TSUYOSHI YOSHITAKE ◽  
TAKASHI NISHIYAMA ◽  
TAKESHI HARA ◽  
KUNIHITO NAGAYAMA

Diamond thin films were grown on diamond (100) substrates in oxygen atmospheres by pulsed laser deposition (PLD) using an ArF excimer laser. The suitable oxygen atmosphere of 5 × 10-2 Torr can etch the sp2 bonding fractions preferentially. At substrate temperatures between 550°C and 650°C, single-phase diamond films consisting of diamond crystal with diameters of 1 - 5 μm could be grown. The results demonstrated that the diamond thin films can be grown homoepitaxially using PLD by controlling the deposition parameters, such as the oxygen pressure and the substrate temperature.


1988 ◽  
Vol 128 ◽  
Author(s):  
Saliman A. Isa ◽  
P. K. Ghosh ◽  
P. G. Kornreich

ABSTRACTZnO thin films were deposited by ion-beam sputtering technique. Preliminary results show that the films are stoichiometric and crystalline in nature. The microstructure of ZnO films obtained depends very much on the process parameters. Among these parameters is the substrate temperature whose effect has been carefully examined.ZnO films were deposited with substrate temperatures ranging from 200°C to 350°C. We observed that the sheet resistance of the films varies with their microstructure. In this investigation, a sheet resistance of 6.6 Mega-ohms per square is measured on a dense film deposited at a substrate temperature of 325°C.We present in this paper a correlation between the film's microstructure and stoichiometry with some of it's electrical properties.


2007 ◽  
Vol 336-338 ◽  
pp. 2215-2217
Author(s):  
Lian Meng Zhang ◽  
Yan Sheng Gong ◽  
Chuan Bin Wang ◽  
Qiang Shen

Highly conductive IrO2 thin films were prepared on Si (100) substrates by pulsed laser deposition technique from an iridium metal target in an oxygen ambient atmosphere. The effect of substrate temperature on the structure and electrical properties of IrO2 films was investigated. The deposited films at substrate temperatures ranging from 250 to 500°C under an oxygen pressure of 20Pa were pure polycrystalline tetragonal IrO2 and the preferential growth orientation changed with the substrate temperature. IrO2 films were well solidified with the fairly homogeneous thickness and exhibited a good adhesion with the substrate. The room-temperature resistivity of IrO2 films decreased with the increase of substrate temperature and the minimum resistivity of (42±6) μ-·cm was deposited at 500°C.


Sign in / Sign up

Export Citation Format

Share Document