Study on Generation of Fine Grained Titanium Aluminide Through Ball Milling of Ti, Al and Ni-P Coated Graphite Powder

2009 ◽  
Vol 67 ◽  
pp. 45-51
Author(s):  
Rohit Kumar Gupta ◽  
Vijaya Agarwala ◽  
Sunayan Thakur ◽  
Ramesh Chandra Agarwala ◽  
Bhanu Pant

High energy ball milling (HEBM) had been carried out to produce submicron size titanium aluminide intermetallics (TiAl) using elemental powders of Ti and Al alongwith Ni-P coated graphite. 1% graphite powders was added to stoichiometric composition of Ti48Al and ball milling was conducted for different milling time at varying rpm. The effect of milling time and rpm on particle size has been studied. The prepared samples have been characterized using X-ray diffraction, differential scanning calorimetry (DSC) and scaning elecron microscopy (SEM). Grain size as low as 500 nm could be achieved. Formation of Ti3Al, TiAl and carbon containing intermetallic compounds had been confirmed through X-ray diffraction. Milling time and rpm of mill is found to be important factors which control the final particle size.

2006 ◽  
Vol 510-511 ◽  
pp. 698-701
Author(s):  
Pyuck Pa Choi ◽  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Dae Hwan Kwon

Mechanically induced crystallization of an amorphous Fe90Zr10 alloy was studied by means of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Under high-energy ball-milling in an AGO-2 mill, melt-spun Fe90Zr10 ribbons undergo crystallization into BCC α- Fe(Zr). Zr atoms are found to be solved in the Fe(Zr) grains up to a maximum supersaturation of about 3.5 at.% Zr, where it can be presumed that the remaining Zr atoms are segregated in the grainboundaries. The decomposition degree of the amorphous phase increases with increasing milling time and intensity. It is proposed that the observed crystallization is deformation-induced and rather not attribute to local temperature rises during ball-collisions.


2011 ◽  
Vol 479 ◽  
pp. 54-61 ◽  
Author(s):  
Fei Wang ◽  
Ya Ping Wang

Microstructure evolution of high energy milled Al-50wt%Si alloy during heat treatment at different temperature was studied. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the size of the alloy powders decreased with increasing milling time. The observable coarsening of Si particles was not seen below 730°C in the high energy milled alloy, whereas, for the alloy prepared by mixed Al and Si powders, the grain growth occurred at 660°C. The activation energy for the grain growth of Si particles in the high energy milled alloy was determined as about 244 kJ/mol by the differential scanning calorimetry (DSC) data analysis. The size of Si particles in the hot pressed Al-50wt%Si alloy prepared by high energy milled powders was 5-30 m at 700°C, which was significantly reduced compared to that of the original Si powders. Thermal diffusivity of the hot pressed Al-50wt%Si alloy was 55 mm2/s at room temperature which was obtained by laser method.


2012 ◽  
Vol 531-532 ◽  
pp. 437-441 ◽  
Author(s):  
Qi He ◽  
Tao Liu ◽  
Jian Liang Xie

Fe-Ni-Cr alloy powders with the different components were prepared by Mechanical Alloying (MA). The phase structure, grain size, micro-strain and lattice distortion were determined with X-ray diffraction. The morphology and particle size of the powders were observed and analyzed using a field emission scanning electron microscopy. The results showed that the Fe-Ni-Cr nanocrystalline powders could be obtained by MA. The ball milling time could be reduced with increasing amount of Cr, resulting the formation of Fe-Ni-Cr powders. With the increasing amount of Cr, the speed of Ni diffusion to Fe lattice approaching saturation became more rapid. The particle size got smaller as the ball milling went further; the extent of micro-strain and distortion of lattice intensified; the solid solubility of Ni and Cr in Fe was increased. Finally the super-saturated solid solution of Fe was obtained.


2020 ◽  
Vol 65 ◽  
pp. 123-134
Author(s):  
Samira Lalaoua ◽  
Bouguerra Bouzabata ◽  
Safia Alleg ◽  
Abedelmalik Djekoun ◽  
David Shmool

Fe-10wt% La (OH)3 composite powders have been fabricated by ball milling, under argon atmosphere for milling periods of 0, 5 and 10 h, respectively. Changes in structural, morphological, thermal and magnetic properties of the powders during mechanical alloying and during subsequent annealing have been examined by X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). XRD results: showed the formation of new phases (Fe and LaFeO3 perovskite) created through the ball milling. The results showed that the crystalline size of ball milled powders decreased with increasing the milling time. In fact, after 10 h of ball milling, La (OH)3 changes from nanostructure in amorphous structure. The magnetic measurements display a distinct saturation magnetization and coercivity.


1997 ◽  
Vol 12 (5) ◽  
pp. 1172-1175 ◽  
Author(s):  
Taiping Lou ◽  
Guojiang Fan ◽  
Bingzhe Ding ◽  
Zhuangqi Hu

The stoichiometric intermetallic compound NbSi2 has been synthesized by mechanical alloying (MA) elemental Nb and Si powders. The alloying process has been investigated by means of x-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was found that the formation of the Nb2Si intermetallic compound occurs abruptly after 65 min of milling without any interruptions during the alloying process. However, short interruptions at a 5 min interval during ball milling result in a gradual reaction for the formation of the NbSi2 compound as well as a new metastable bcc structured solid solution. We conclude that the temperature rise during mechanical alloying plays an important role in initiating the abrupt reaction after an incubation milling time.


2020 ◽  
Vol 989 ◽  
pp. 532-536
Author(s):  
Olga M. Kanunnikova ◽  
V.V. Aksenova ◽  
G.A. Dorofeev

The transformations of the solid and liquid phases at high energy planetary ball milling of heptane together with titanium powder were investigated. The sequence of structural heptane transformations using UV-and FT-IR spectroscopy was investigated. Phase constitutions of ball milled titanium powders were studied by X-ray diffraction. It is shown that mechanically induced destruction of heptane occurs by the mechanism of catalytic cracking. The main solid products of the mechanosynthesis were hexagonal (HCP) and cubic (FCC) titanium carbohydrides. Evolution of lattice parameters, crystallite sizes, and micro-stresses of the solid phases during ball milling as a function of the ball milling time have been discussed.


2017 ◽  
Vol 17 ◽  
pp. 96-100 ◽  
Author(s):  
S. Renold Elsen ◽  
K. Jegadeesan ◽  
J. Ronald Aseer

Ball milling is one of the top down approach used for reducing the particle size of bulk powder. Especially high energy ball milling is done to reduce the particle size to nanodomain. The Zirconia Toughened Alumina nanocomposite has diverged application in different engineering fields. The alumina and zirconia powders used for fabrication of Zirconia Toughened Alumina composite are subjected for ball milling. The effect of ball milling on the powders is reported on the work. The characterisation of the powder samples were done by X-ray diffraction. This was done to evaluate the effect of the starting material on the final product. Using the Scherer’s formula, Williamson-Hall analysis the change in crystallite size and strain were analysed.


2019 ◽  
Vol 13 (2) ◽  
pp. 210-217
Author(s):  
Milica Vucinic-Vasic ◽  
Bratislav Antic ◽  
Marko Boskovic ◽  
Aleksandar Antic ◽  
Jovan Blanusa

Nanocomposites (HAp/iron oxide), made of hydroxyapatite (HAp) and ferrimagnetic iron oxide, were synthesized by high-energy ball milling a mixture consisting of iron oxide nanoparticles and the starting materials used for the HAp synthesis: calcium hydrogen phosphate anhydrous (CaHPO4), and calcium hydroxide (Ca(OH)2). Two HAp/iron oxide samples with the magnetic phase content of 12 and 30 wt.% were prepared and their microstructure, morphology and magnetic properties were analysed by X-ray diffraction and transmission electron microscopy. Furthermore, the measurement of particle size distribution was performed by laser scattering, and temperature/field dependence on magnetization was determined. X-ray diffraction data confirmed the formation of two-phased samples (HAp and spinel iron oxide) without the presence of any other parasite phase. The shape of particles was nearly spherical in both samples, ranging from only a few to several tens of nanometres in diameter. These particles formed agglomerates with the most common value of the number-based particle size distribution of 380 and 310 nm for the sample with 12 and 30wt.% of iron oxide, respectively. Magnetization data showed that both HAp/iron oxide composites had superparamagnetic behaviour at room temperature.


2020 ◽  
Vol 9 (4) ◽  
pp. e175943067
Author(s):  
João Augusto Martins Almeida ◽  
Bruna Horta Bastos Kuffner ◽  
Gilbert Silva ◽  
Patrícia Capellato ◽  
Daniela Sachs

There are a class of material widely used in bone tissue repair. This material is calcium phosphate ceramics (CPCs)that can be used on two phases: α and β. However, β-TCP is more used in bone regeneration than α–TCP due to the biocompatible and bioactive properties.In the present work evaluate the influence of these two distinct processes to deagglomeration and the consequence in the particle size of the β-TCP obtained through solid-state reaction. Among all of the routes used in research and industry to reduce the particles size of different materials, the high energy ball milling is one of the most effective, due to the high rotation speed that this process achieves. The deagglomeration through agate mortar is considered a cheaper process when compared with the high energy ball milling. The characterization of both powders, deagglomerated in high energy ball milling and agate mortar, was realized through scanning electron microscopy, to analyze the powder morphology, and laser granulometry, to determine the size of the particles. Also, the forerunner powder was previously submitted to x-ray diffraction to confirm the formation of the β-TCP phase. The analysis through x-ray diffraction confirmed that the phase formed during the calcination process corresponded to the β-TCP. The results obtained after the deagglomeration processes indicated that the morphology was predominantly irregular for both powders. In relation to the granulometry, the deagglomeration performed through agate mortar showed to produce particles with smaller size (11,4µm e 0,9µm) and heterogeneous distribution, while the high energy ball milling process produced particles with larger size (11,4µm a 1,8µm) and higher homogeneity.


2010 ◽  
Vol 660-661 ◽  
pp. 701-706
Author(s):  
Helio R. Simoni ◽  
Eduardo Saito ◽  
Claudinei dos Santos ◽  
Felipe Antunes Santos ◽  
Alfeu Saraiva Ramos ◽  
...  

In this work, the effect of the milling time on the densification of the alumina ceramics with or without 5wt.%Y2O3, is evaluated, using high-energy ball milling. The milling was performed with different times of 0, 2, 5 or 10 hours. All powders, milled at different times, were characterized by X-Ray Diffraction presenting a reduction of the crystalline degree and crystallite size as function of the milling time increasing. The powders were compacted by cold uniaxial pressing and sintered at 1550°C-60min. Green density of the compacts presented an increasing as function of the milling time and sintered samples presented evolution on the densification as function of the reduction of the crystallite size of the milled powders.


Sign in / Sign up

Export Citation Format

Share Document