A Study on the Effect of Initial Shear Stress on Dynamic Properties of Saturated Clay

2013 ◽  
Vol 671-674 ◽  
pp. 171-174
Author(s):  
Jian Feng Qi ◽  
Ying Yuan ◽  
Zht Wang

Through a series of tests on saturated remoulded clay, initial shear stress on dynamic shear modulus and damping ratio under the condition of large strain(>10-3) is examined. The test data indicate that initial shear stress effects on stress-strain relation and dynamic modulus and damping ratio are obvious. With the initial shear stress increasing, the characteristic of the stress-strain relation changes from cyclic deformation to accumulative deformation, and there is difference in variation pattern of dynamic shear modulus and damping ratio with cyclic number increasing.

2020 ◽  
Vol 12 (4) ◽  
pp. 1616 ◽  
Author(s):  
Xianwen Huang ◽  
Aizhao Zhou ◽  
Wei Wang ◽  
Pengming Jiang

In order to support the dynamic design of subgrade filling engineering, an experiment on the dynamic shear modulus (G) and damping ratio (D) of clay–gravel mixtures (CGMs) was carried out. Forty-two groups of resonant column tests were conducted to explore the effects of gravel content (0%, 10%, 20%, 30%, 40%, 50%, and 60%, which was the mass ratio of gravel to clay), gravel shape (round and angular gravels), and confining pressure (100, 200, and 300 kPa) on the dynamic shear modulus, and damping ratio of CGMs under the same compacting power. The test results showed that, with the increase of gravel content, the maximum dynamic shear modulus of CGMs increases, the referent shear strain increases linearly, and the minimum and maximum damping ratios decrease gradually. In CGMs with round gravels, the maximum dynamic shear modulus and the maximum damping ratio are greater, and the referent shear strain and the minimum damping ratio are smaller, compared to those with angular gravels. With the increase of confining pressure, the maximum dynamic shear modulus and the referent shear strain increase nonlinearly, while the minimum and maximum damping ratios decrease nonlinearly. The predicting equation for the dynamic shear modulus and the damping ratio of CGMs when considering confining pressure, gravel content, and shape was established. The results of this research may put forward a solid foundation for engineering design considering low-strain-level mechanical performance.


2021 ◽  
Vol 55 (5) ◽  
Author(s):  
Jian Zhang ◽  
Jiuting Cao ◽  
Sijie Huang ◽  
Baocun Shi

Initial shear stress is inevitable in actual engineering slopes, subgrades and foundations, and soils exhibit different dynamic characteristics under the influence of initial shear stress. Using a dynamic triaxial test system, this study explores the dynamic shear modulus and damping ratio of saturated sand from Wenchuan, investigates the effects of the initial shear stress and vibration frequencies on the dynamic shear modulus and damping ratio of saturated sand and proposes a normalised dynamic shear modulus formula that considers the initial shear stress and vibration frequency. Results show a threshold dynamic shear strain of the saturated sand. When the dynamic shear strain is below this threshold, the dynamic shear modulus significantly increases with the initial shear stress and vibration frequency. Otherwise, the influence of the initial shear stress and vibration frequency gradually decreases and eventually stabilises. The initial shear stress significantly affects the normalised dynamic shear modulus/strain curves where a larger initial shear stress corresponds to a higher curve. Meanwhile, the vibration frequency only exerts a slight influence. The curves under different frequencies are generally within the same band and fall near the Seed upper envelope. The initial shear stress also has a significant influence on the damping ratio where a larger initial shear stress corresponds to a smaller damping ratio. On the basis of the experimental results, a normalised dynamic shear modulus/shear strain formula that considers the influence of the initial shear stress and vibration frequency is established. Fitting results indicate that this formula shows good agreement with the test data.


2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


2011 ◽  
Vol 374-377 ◽  
pp. 1391-1395
Author(s):  
Xue Song Lu ◽  
Wei Xiang

Based on the red clay of Wuhan reinforced by Ionic Soil Stabilizer, the red clay soil is treated by different matches of ISS at first, then is tested in the Atterberg limits test and dynamic triaxia test. The results show that the plastic index decreases, and the red clay were greatly improved under the dynamic condition, the maximum dynamic shear modulus ratio acquired an incensement of 27.72% on average after mixing the ISS into the red clay. In addition, It was concluded that the confining pressure influenced the dynamic shear modulus and damping ratio to a certain extent. Given the same strain conditions, with the incensement of confining pressure increases, the dynamic shear modulus increased and the damping ratio decreased. Moreover, when plotting the dynamic shear modulus versus the dynamic shear strain, the similar curve can be formed for both the natural soil and the modified one, the dynamic shear modulus monotonously decreased with the incensement of the dynamic shear strain. However, the value of dynamic shear modulus differed in the same shear strain between the natural soil and the soil modified by ISS.


2019 ◽  
Vol 31 (10) ◽  
pp. 04019244 ◽  
Author(s):  
Ruxin Jing ◽  
Feng Zhang ◽  
Decheng Feng ◽  
Xueyan Liu ◽  
Athanasios Scarpas

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Kaisheng Chen ◽  
Qinqin Wang ◽  
Dipu Luo ◽  
Bo Zhou ◽  
Kun Zhang

Rubber powder formed from discarded tire rubber is mixed with red clay to form a rubber-red clay mixture. The dynamic triaxial test was carried out on the mixtures under different conditions. The effects of rubber content, rubber particle size, moisture content of mixed soil, compactness, confining pressure, and vibration frequency on shear strain relation, dynamic shear modulus, and damping ratio of the mixture were investigated. The results show that under the same dynamic strain, the dynamic shear stress-strain curve of rubber mixed soil decreases with the increase in rubber particle content and moisture content and decrease in rubber particle size. On the other hand, it increases with the increase in compactness, confining pressure, and vibration frequency, and as the dynamic strain increases, the τd-γd curve becomes more nonlinear. In addition, with the increase in the rubber particle content, the dynamic shear modulus decreased while the damping ratio increased. When the content was 2%, the change was fastest. After continued addition, it gradually became stable, and when the decrease in rubber particle size also shows the same pattern, 2.00 mm rubber-red clay mixture shows better structure. The water content has great influence on dynamic shear modulus and damping ratio of rubber-red clay mixtures. With the increase in compactness, confining pressure, and vibration frequency, the interaction between mixed soil particles was enhanced, the dynamic shear modulus increased, and the damping ratio decreased.


2018 ◽  
Vol 162 ◽  
pp. 170-180 ◽  
Author(s):  
Wei Li ◽  
Lei Lang ◽  
Da Wang ◽  
Yang Wu ◽  
Fudong Li

Sign in / Sign up

Export Citation Format

Share Document