Efficient Delivery of Dexibuprofen Using Nanocrystals

2013 ◽  
Vol 678 ◽  
pp. 281-285
Author(s):  
Natesan Subramanian ◽  
Sugumanran Abimanyu ◽  
P. Chandra Sekar ◽  
Murugan Sivakumar ◽  
Yachamaneni Varun ◽  
...  

The main aim of present study is to develop the nanocrystals as a viable drug delivery strategy for the improvement of dissolution rate and bioavailability of dexibuprofen. Dexibuprofen nanocrystals were prepared by the combination of precipitation and high shear homogenization method. Particle size and morphology of produced nanocrystals were compared with that of the pure drug. Particle size of nanocrystals is in the range of 95 to 117 nm were as 2.43µm for pure drug. Photomicrographs of phase contrast microscopy and the TEM showed the spherical shape of the nanocrystals. In-vitro drug release of dexibuprofen nanocrystals formulations was studied by dialysis bag method and observed the drug release of 92 to 100% within 6 hrs. Hence we conclude that the formulated nanocrystals may offer exciting opportunities for oral and other formulations.

Author(s):  
S Srikanth Reddy ◽  
G Suresh

The current research is aimed at developing liquid self-nanoemulsifying drug delivery system (liquid-SNEDDS) of Manidipine for enhanced solubility and oral bioavailability. The Manidipine SNEDDS are formulated with excipients comprising of Capmul MCM (oil phase), Transcutol P (surfactant) Lutrol L 300 as co-surfactant. The prepared fifteen formulations of Manidipine SNEDDS analysed for emulsification time, percentage transmittance, particle size, in vitro drug release, and stability studies. In vivo pharmacokinetic studies of the optimized formulation were carried out in Wistar rats in comparison with control (pure drug). The morphology of Manidipine SNEDDS indicates spherical shape with uniform particle distribution. The percentage drug release from optimized formulation F14 is 98.24 ± 5.14%. The particle size F14 formulation was 22.4 nm and Z-Average 23.3 nm. The PDI and zeta potential of Manidipine SNEDDS optimized formulation (F14) were 0.313 and-5.1mV respectively. From in vivo bioavailability data the optimized formulation exhibited a significantly greater Cmax and Tmax of the SNEDDS was found to be 3.42 ± 0.46ng/ml and 2.00 ± 0.05 h respectively. AUC0-∞ infinity for formulation was significantly higher (11.25 ± 3.45 ng.h/ml) than pure drug (7.45 ± 2.24ng. h/ml). Hence a potential SNEDDS formulation of Manidipine developed with enhanced solubility and bioavailability.


2021 ◽  
Vol 12 (7) ◽  
pp. 25-31
Author(s):  
Pooja . ◽  
Pankaj Kumar Sharma ◽  
Viswanath Agrahari

Background: The aim of this study is to develop a liquid self-nano emulsifying drug delivery system for alverine (liquid-SNEDDS).Excipients in the alverine SNEDDS include Ethyl oleate as the oil phase, Tween 80 as a surfactant, and PEG600, Propylene glycol as a cosurfactant.The prepared eleven formulations of alverine SNEDDS were performed for emulsification time, percentage transmittance, particle size, drug release, in vitro dissolution and stability studies.The optimised alverine liquid SNEDDS formulation (D1) was studied for drug-excipient compatibility using infrared spectroscopy, as well as particle size, zeta potential, transmission electron microscopy, and stability. Alverine SNEDDS have a spherical shape with uniform particle distribution, according to their morphology. D1's optimised formulation's drug release percentage (96.6). The stability data revealed no discernible changes in drug content, emulsifying properties, drug release, or appearance. As a result, a potential SNEDDS formulation of alverine with improved solubility, dissolution rate, and bioavailability was developed.


Author(s):  
Sanjeevani S Deshkar ◽  
Kiran G Sonkamble ◽  
Jayashri G Mahore

Objective: The study aims at the formulation and optimization of gemfibrozil (Gem) nanosuspension (NS) for improving its solubility and dissolution rate.Method: Gem NS was prepared by precipitation-ultrasonication method using ethanol as solvent, water as anti-solvent, and polyvinyl alcohol (PVA) as a stabilizer. A Box–Behnken design was employed to study the effect of the independent variables, Gem concentration in the organic phase (X1), PVA concentration (X2) and sonication time (X3) on the dependent variable, drug release after 90 min (Y). The resulting data were statistically analyzed and subjected to 3D response surface methodology to study the influence of variables on the response. NS was evaluated for particle size, zeta potential, solubility and in vitro drug release and characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffractometry (XRD).Results: On the basis of the evaluation, NS4 formulation (with 80 mg/ml Gem, 0.5% PVA concentration, and 20 min of sonication time) demonstrated highest drug content with a particle size of 191.0 nm and zeta potential of −12.0 mV. Dissolution profiles of NS indicated 2.5-fold increase in drug release than pure drug. NS demonstrated 5- and 9-fold increase in solubility, in water, and phosphate buffer (pH 7.5), respectively, pure drug. DSC and XRD studies indicated changes in the crystallinity of Gem during NS formulation. No chemical change was evident in NS as indicated by FTIR.Conclusion: Gem NS formulation could serve as a promising approach for improving its solubility and dissolution rate.


2019 ◽  
Author(s):  
◽  
Nan Wang

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] A novel antivirulence compound CCG-211790 (termed as C790 in this context), has demonstrated significant inhibition against several severe antibiotic-resistant bacteria. However, its clinical use is restricted by formulation challenges arising from its poor aqueous solubility. In this dissertation, plate-like or tube-like C790 nanoparticles with thickness down to one hundred nanometers have been successfully produced using antisolvent precipitation- ultrasonication method. C790 nanoparticles, in the form of suspensions, have exhibited remarkably enhanced dissolution rate which obtained almost 100% release within 5 minutes under in-vitro sink environment. The concentration of surfactants in antisolvent and the ultrasonic cavitation intensity are regarded as two of the most important parameters affecting particle size and morphology. Small plate-like particles were produced with low surfactant concentration (below or close to their critical micelle concentration) and high cavitation intensity, while large curved plate-like or tube-like particles were produced with high surfactant concentration (far above their CMC) and low cavitation intensity. The cavitation intensity can be controlled by the volume of water filled in ultrasonic tank, and there is a threshold below which the particle size can be maintained in a narrow range, e.g. of 320-360 nm when 0.02% w/v Tween 80 is applied. Both the small platelike particles and the large curved-plate/tube-like particles carry high magnitude of zeta potential that provides good electrostatic stabilization for at least 6 or 12 weeks depending on particle size and morphology when storing at 4 [degrees]C and room temperature. Both the small plate-like particles and the large curved-plate/tube-like particles, in the form of suspension, have significant advantages over solution formulations (PEG/PG and PEG/Tween formulations) for intravenous administration. In addition, these two suspensions, which have different particle size and morphology, have increased oral bioavailability from 8.0% of the bulk powder formulation to 28.6% and 22.7%, respectively. The C790 nanosuspensions, in particular the one with small plate-like particles, has demonstrated promising clinical potential as oral and intravenous formulations.


Author(s):  
Bhupendra Prajapati ◽  
Umang Varia

The main objective of the research work was to improve the solubility of Bosentan by preparing Microemulsion (ME) for pulmonary artery hypertension therapy. Capmul MCM C8 was selected as oil, Tween 20 as a surfactant and Transcutol HP as a co-surfactant. From Pseudoternary phase diagram ratio of Smix (1:1) selected. From the Microemulsion area of ternary diagram different batches were prepared, but the drug was precipitate from the formulation which can be avoid by adding precipitate inhibitor. Pluronic F 127 was utilized as precipitate inhibitor in the concentration of 1.5%. The optimized formulation ME 8 contain oil (30 %V/V), Smix (60 %V/V) and water (10 %V/V). The prepared Microemulsion evaluated for globule size 96.71±0.11 nm, % transmittance 99.45±0.54 % and >99 % drug content. TEM confirm the spherical shape of globule. The physicochemical parameter of ME 8 was performed and to enhance the stability of Microemulsion it is converted in to solid ME by using adsorbent. Aeroperl 300 was selected as an adsorbent in the drug to adsorbent ratio (1:0.5 %W/W) based on physicochemical properties. From the in-vitro drug release investigation after 7 hours %CDR of ME 8 was found to be 78.87±0.17% and solid Microemulsion (SME 3) shows 76.83±0.29%. The pure drug shows only 27.63±0.23% CDR, which indicate that ME revealed better drug release than pure drug. There was a 2.8 fold increases in solubility compare to pure drug. From the In-vivo data compared to convention formulation, there was significant change in pharmacokinetics data observed.


Author(s):  
SRIKANTH REDDY S ◽  
SURESH G

Objective: The present work is aimed at developing liquid self-nanoemulsifying drug delivery system (liquid-SNEDDS) of manidipine. Methods: The manidipine SNEDDS is formulated with excipients comprising Capmul MCM as oil phase, Transcutol P as surfactant, and Lutrol L 300 as cosurfactant. The prepared fifteen formulations of manidipine SNEDDS were performed for emulsification time, percentage transmittance, particle size, drug release, in vitro dissolution and stability studies. Ternary phase diagram plotted using Chemix software. Results: The optimized manidipine liquid SNEDDS formulation (F14) subjected to drug-excipient compatibility studies by Fourier-transform infrared spectroscopy and characterized for particle size, zeta potential, scanning electron microscopy, and stability studies. The morphology of manidipine SNEDDS indicates spherical shape with uniform particle distribution. The percentage drug release from optimized formulation F14 (98.24±5.14%) was higher than that of pure drug (39.17±2.98%). The stability data indicated no noticeable change in drug content, emulsifying properties, drug release, and appearance. Conclusion: Hence, a potential SNEDDS formulation of manidipine developed with enhanced solubility, dissolution rate, and bioavailability.


Author(s):  
Suresh Gande ◽  
S. Srikanth Reddy ◽  
Bhikshapathi D. V. R. N.

Self-nanoemulsifying drug delivery system (SNEDDS) of Nimodipine was developed with the purpose of improving the bioavailability of the drug. Based on the results of Nimodipine solubility studies Peceol, Transcutol P and PEG 400 were optimized as oil, surfactant and co-surfactant for the formulation and Pseudo ternary plots was constructed by Chemix software. Fifteen formulations of Nimodipine SNEDDS prepared and analyzed for particle size, emulsification time, percentage drug release, percentage transmittance, in vitro drug dissolution studies and thermodynamic stability. The optimized Nimodipine SNEDDS formulation (F13) subjected to drug-excipient compatibility studies by FTIR. They are analyzed for zeta potential, SEM and stability. The particle size of optimized Nimodipine SNEDDS formulation was 25.9 nm, PDI is 0.382 and zeta potential -12.7 mV that are optimal for the stability of emulsion. SEM studies of Nimodipine SNEDDS indicated spherical shape and uniform particle distribution. The drug release of formulation F13 (98.25±4.77%) was higher than pure drug (38.49±3.88%). The stability studies indicated no change in drug content, drug release, emulsifying properties and appearance. Hence a potential SNEDDS formulation of Nimodipine developed with increased dissolution rate, bioavailability and solubility.


Author(s):  
Sanjeevani S Deshkar ◽  
Kiran G Sonkamble ◽  
Jayashri G Mahore

Objective: The study aims at the formulation and optimization of gemfibrozil (Gem) nanosuspension (NS) for improving its solubility and dissolution rate.Method: Gem NS was prepared by precipitation-ultrasonication method using ethanol as solvent, water as anti-solvent, and polyvinyl alcohol (PVA) as a stabilizer. A Box–Behnken design was employed to study the effect of the independent variables, Gem concentration in the organic phase (X1), PVA concentration (X2) and sonication time (X3) on the dependent variable, drug release after 90 min (Y). The resulting data were statistically analyzed and subjected to 3D response surface methodology to study the influence of variables on the response. NS was evaluated for particle size, zeta potential, solubility and in vitro drug release and characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffractometry (XRD).Results: On the basis of the evaluation, NS4 formulation (with 80 mg/ml Gem, 0.5% PVA concentration, and 20 min of sonication time) demonstrated highest drug content with a particle size of 191.0 nm and zeta potential of −12.0 mV. Dissolution profiles of NS indicated 2.5-fold increase in drug release than pure drug. NS demonstrated 5- and 9-fold increase in solubility, in water, and phosphate buffer (pH 7.5), respectively, pure drug. DSC and XRD studies indicated changes in the crystallinity of Gem during NS formulation. No chemical change was evident in NS as indicated by FTIR.Conclusion: Gem NS formulation could serve as a promising approach for improving its solubility and dissolution rate.


Author(s):  
NALLAPU JAYAPAL ◽  
YAMSANI VAMSHI VISHNU

Objective: The aim was to formulate and evaluate self-nanoemulsifying drug delivery systems (SNEDDS) of ramipril, an antihypertensive drug to improve the solubility and bioavailability. Methods: Based on solubility studies oil phase (Sefsol 218), surfactant (Acrysol EL135), and cosurfactant (Transcutol P), respectively, were selected to prepare SNEDDS. Ramipril SNEDDS optimized employing box-Behnken design through the study of factors. All formulations were evaluated for particle size, zeta potential (ZP), polydispersity index (PDI), entrapment efficiency (EE), drug content, and in vitro drug release. The optimized formulation was characterized for Fourier transform infrared (FTIR), scanning electron microscopy (SEM), stability studies, and pharmacokinetic study. Results: The mean particle size, PDI, ZP, EE, content uniformity, and in vitro drug release profile of optimized ramipril-loaded SNEDDS (RF14) were found to be 75.3±2.21nm, 0.126±0.05, −24.4±5.78mV, 98.74±1.97%, 99.52±1.67%, and 98.65±1.73%, respectively. FTIR studies revealed that there is no incompatibility between drug and excipients, SEM images exhibited nanoparticles to be more porous and in spherical shape. Stability studies indicated formulation was stable for 6 months. In vivo studies were conducted for optimized formulation RF14, the Tmax was found to be 0.5±0.62 and 0.5±0.95 h for the optimized and commercial formulations respectively, while Cmax was 25.16±1.73 ng/mL was significant (p<0.05) as compared to the ramipril pure drug 8.02±0.086 ng/mL. AUC0-t of the SNEDDS formulation was higher 355.49±1.76ng h/ml compared to pure drug 116.57±1.64 ng h/ml indicated higher amount of drug concentration in blood proving better systemic absorption of ramipril from SNEDDS formulation as compared to the pure drug. Conclusion: It is concluded from the results that ramipril was successfully formulated into SNEDDS with higher concentration with fast action.


Author(s):  
NINING NINING ◽  
YUDI SRIFIANA ◽  
ELY MALINDA FADLIANTY

Objective: Allicin, a natural organosulfur compound, is the main garlic ingredient, which has extensive pharmacological activities. Its unstable under acidic conditions due to alliinase's inactivation causes the need for preparations that delayed-release in the stomach to maximize allicin absorption. This study aimed to prepare and characterize the enteric-coated microsphere of phytosome loading allicin-rich extract to protect it from gastric acid. Methods: The allicin-rich extract phytosome (ArE-Ps) was prepared and evaluated for characteristics. Microsphere was made in three formulas with different molar ratios of ArE-Ps and Eudragit L30D-55 (1:1; 1:1.5 and 1:2) by spray dry. The three microspheres compared to particle size, entrapment efficiency, and dissolution test in acid and 7.4 pH medium. Results: Optimized ArE-Ps has a size of 251.6 nm, polydispersity index 0.466, zeta potential 34.11, entrapment efficiency of 62.62 %, and specific gravity of 1,005 g/ml. The surface topography of the three formulas shows an almost spherical shape with concave surfaces. The particle size of the microsphere ranges from 215±6.27 nm to 548.8±10.15 nm. Entrapment efficiency increases with an increasing number of polymers with a maximum value of 65.44 % at F3. The results dissolution test in vitro showed no drug release in acidic medium, and drug release occurred at a 7.4 pH medium. Drug release of three microsphere formulations followed the Korsmeyer-Peppas model with a k value of 12.7088±0.1769; 17.9322±1.5621; and 12.958±1.2677; respectively. Conclusion: Based on these results, the polymer's increase in three microsphere formulations can affect characteristics and retain drug release under acidic conditions.


Sign in / Sign up

Export Citation Format

Share Document