Finite Element Analysis and Fracture Forecast of U Channel Flexible Roll Forming

2013 ◽  
Vol 683 ◽  
pp. 604-607 ◽  
Author(s):  
Wei Zhao ◽  
Yu Yan ◽  
Hai Bo Wang ◽  
Jin Feng Gao

Focus on fracture defect of DP980 in Flexible roll forming, this research have done a finite-element analysis based on explicit solver and shear damage criterion, and using element deletion of finite element software ABAQUS to realize the fracture evolution of sheet damaged area. During the modeling, parameters of fracture evolution are set, and finally gain the conclusion about the relationship between stress, strain, energy density and fracture. The research provides theoretical guidance for practical production.

2012 ◽  
Vol 249-250 ◽  
pp. 874-880 ◽  
Author(s):  
Yan Zhi Guan ◽  
Qiang Li ◽  
Yu Yan

By applying the shear damage criteria, facture occurrence for roll forming of U Section parts of TRIP 600 steel is analyzed with nonlinear finite element. In accordance with the maximum value of steel sheet of plastic strains for the fracture initiation and with the application of the element deletion technology of the ductile fracture, the calculation of the damage evolution parameters of the material fracture is successfully set up. By applying the explicit dynamic solution method, the fracture finite element analysis of TRIP600U type section roll forming is realized, and the relationship among the stress, strain, energy density as well as damage evolution and material fracture is obtained.


2013 ◽  
Vol 690-693 ◽  
pp. 2327-2330
Author(s):  
Ming Bo Han ◽  
Li Fei Sun

By using finite element software, the paper establishes the main stand analysis model of the Ф140 pipe rolling mill and provides the model analysis of main stand in cases of full load. Verify the design of main stand fully comply with the technical requirements .In this paper, it provides the theoretical position of split casting and welding method using electric slag welding.


2014 ◽  
Vol 633-634 ◽  
pp. 693-698
Author(s):  
Long Xin ◽  
Shi Chao Cui ◽  
Qi Lin Shu

In this paper, the ram of boring and milling machining center is taken as the research object. A new method that hydraulic pull rods compensation is proposed to solve the problem of deformation compensation of long stroke ram of boring and milling machining center. Firstly, the method of finite element analysis is used to get the laws of ram deformation and the relationship curve between the ram deformation and the stroke of ram. Secondly, the preliminary calculation value of pull rods compensation force is derived based on the theoretical analysis of material mechanics. The relationship curve between compensation force and the stroke of ram is obtained by finite element analysis and polynomial least squares method. Finally, the analyzed results are as follows: the laws of ram deformation distribution is accurately predicted by the used method, the deflection error of the ram is well controlled,and the machining precision is significantly improved.


2016 ◽  
Vol 852 ◽  
pp. 588-594
Author(s):  
Gagan Gupta ◽  
V. Balasubramaniyan

Inner vessel in reactor assembly of sodium cooled fast reactor separates hot and cold pool sodium. The shape of inner vessel is optimized with reduced upper & lower shell diameters and toroidal redan for future Fast Breeder Reactor (FBR). This results in higher buckling strength and reduced thickness and hence reduced weight. To achieve the intricate toroidal shape with specified dimensional tolerances, a comprehensive technology development exercise was carried out successfully for the manufacture of inner vessel 30° sector. The achieved profile of the redan meets the specified dimensions and other design requirements. Spring-back observed in the sector was small. To verify the developmental exercise results, a finite element analysis (FEA) of forming of inner vessel sector was performed on finite element software ABAQUS. In this paper, FEA results and spring back are discussed. Spring back assessed is maximum at the center and relatively lower towards the edges for the redan with the chosen radius of 5980 mm.


2021 ◽  
pp. 1-14
Author(s):  
Xiaodong Chen ◽  
ZM Xie ◽  
Huifeng Tan

Abstract How to enlarge the output displacement is a key issue in the research field of microgrippers. It is difficult to further enlarge the output displacement for the traditional displacement transmission mechanism (DTM). In this research, a two-stage amplification cylinder-driven DTM based on the compliant mechanisms is designed to realize the displacement output expansion. The opening and closing of the clamping jaws is driven by the air cylinder to enlarge the output displacement of the microgripper. According to the analysis of statics model of the mechanism, the relationship between the output displacement of the microgripper and the driving pressure of the cylinder is established. The magnification of the microgripper is obtained using a dynamic model. Moreover, based on the finite element analysis, the mechanical structure parameters are optimized. The microgripper was fabricated by utilizing wire electro discharge machining (WEDM) technique, and then a series of experiments were carried out to obtain the relationship between the displacement and the driving pressure. It is found that the maximum output displacement measured is 1190.4μm under the pressure of 0-0.6 Mpa, corresponding to the magnification of 47.63. Compared with the results of finite element analysis and theoretical calculation, the test results have a discrepancy of 2.39% and 6.62%, respectively. The microgripper has successfully grasped a variety of micro-parts with irregular shapes, and parallel grasping can be achieved, demonstrating the potential application of this design in the field of micromanipulation.


Author(s):  
Siham Ouhimmou

Uncertainty modelling with random variables motivates the adoption of advanced PTM for reliability analysis to solve problems of mechanical systems. Probabilistic transformation method (PTM) is readily applicable when the function between the input and the output of the system is explicit. When these functions are implicit, a technique is proposed that combines finite element analysis (FEA) and probabilistic transformation method (PTM) that is based on the numerical simulations of the finite element analysis (FEA) and the probabilistic transformation method (PTM) using an interface between finite element software and Matlab. Structure problems are treated with the proposed technique, and the obtained results are compared to those obtained by the reference Monte Carlo method. A second aim of this work is to develop an algorithm of global optimization using the local method SQP. The proposed approach MSQP is tested on test functions comparing with other methods, and it is used to resolve a structural problem under reliability constraints.


Sign in / Sign up

Export Citation Format

Share Document