An Energy Aware Routing Based on Swarm Intelligence for Wireless Sensor Networks

2013 ◽  
Vol 706-708 ◽  
pp. 635-638
Author(s):  
Yong Lv

Wireless Sensor Networks consisting of nodes with limited power are deployed to collect and distribute useful information from the field to the other sensor nodes. Energy consumption is a key issue in the sensor’s communications since many use battery power, which is limited. In this paper, we describe a novel energy efficient routing approach which combines swarm intelligence, especially the ant colony based meta-heuristic, with a novel variation of reinforcement learning for sensor networks (ARNet). The main goal of our study was to maintain network lifetime at a maximum, while discovering the shortest paths from the source nodes to the sink node using an improved swarm intelligence. ARNet balances the energy consumption of nodes in the network and extends the network lifetime. Simulation results show that compared with the traditional EEABR algorithm can obviously improve adaptability and reduce the average energy consumption effectively.

2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668968 ◽  
Author(s):  
Sunyong Kim ◽  
Chiwoo Cho ◽  
Kyung-Joon Park ◽  
Hyuk Lim

In wireless sensor networks powered by battery-limited energy harvesting, sensor nodes that have relatively more energy can help other sensor nodes reduce their energy consumption by compressing the sensing data packets in order to consequently extend the network lifetime. In this article, we consider a data compression technique that can shorten the data packet itself to reduce the energies consumed for packet transmission and reception and to eventually increase the entire network lifetime. First, we present an energy consumption model, in which the energy consumption at each sensor node is derived. We then propose a data compression algorithm that determines the compression level at each sensor node to decrease the total energy consumption depending on the average energy level of neighboring sensor nodes while maximizing the lifetime of multihop wireless sensor networks with energy harvesting. Numerical simulations show that the proposed algorithm achieves a reduced average energy consumption while extending the entire network lifetime.


2015 ◽  
Vol 15 (3) ◽  
pp. 554
Author(s):  
Y. Chalapathi Rao ◽  
Ch. Santhi Rani

<p>Wireless Sensor Networks (WSNs) consist of a large quantity of small and low cost sensor nodes powered by small non rechargeable batteries and furnish with various sensing devices. The cluster-based technique is one of the good perspectives to reduce energy consumption in WSNs. The lifetime of WSNs is maximized by using the uniform cluster location and balancing the network loading between the clusters. We have reviewed various energy efficient schemes apply in WSNs of which we concerted on clustering approach. So, in this paper we have discussed about few existing energy efficient clustering techniques and proposed an Energy Aware Sleep Scheduling Routing (EASSR) scheme for WSN in which some nodes are usually put to sleep to conserve energy, and this helps to prolong the network lifetime. EASSR selects a node as a cluster head if its residual energy is more than system average energy and have low energy consumption rate in existing round. The efforts of this scheme are, increase of network stability period, and minimize loss of sensed data. Performance analysis and compared statistic results show that EASSR has significant improvement over existing methods in terms of energy consumption, network lifetime and data units gathered at BS.</p>


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


2021 ◽  
Author(s):  
Negin Babaei ◽  
Alireza Hedayati

Abstract Internet of things is one of the most important technologies in the last century which covers various domains such as wireless sensor networks. Wireless sensor networks consist of a large number of sensor nodes that are scattered in an environment and collect information from the surrounding environment and send it to a central station. One of the most important problems in these networks is saving energy consumption of nodes and consequently increasing lifetime of networks. Work has been done in various fields to achieve this goal, one of which is clustering and the use of sleep timing mechanisms in wireless sensor networks. Therefore, in this article, we have examined the existing protocols in this field, especially LEACH-based clustering protocols. The proposed method tries to optimize the energy consumption of nodes by using genetic-based clustering as well as a sleep scheduling mechanism based on the colonial competition algorithm. The results of this simulation show that our proposed method has improved network life (by 18%) and average energy consumption (by 11%) and reduced latency in these networks (by 17%).


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4072
Author(s):  
Tanzila Saba ◽  
Khalid Haseeb ◽  
Ikram Ud Din ◽  
Ahmad Almogren ◽  
Ayman Altameem ◽  
...  

In recent times, the field of wireless sensor networks (WSNs) has attained a growing popularity in observing the environment due to its dynamic factors. Sensor data are gathered and forwarded to the base station (BS) through a wireless transmission medium. The data from the BS is further distributed to end-users using the Internet for their post analysis and operations. However, all sensors except the BS have limited constraints in terms of memory, energy and computational resources that degrade the network performance concerning the network lifetime and trustworthy routing. Therefore, improving energy efficiency with reliable and secure transmissions is a valuable debate among researchers for critical applications based on low-powered sensor nodes. In addition, security plays a significant cause to achieve responsible communications among sensors due to their unfixed and variable infrastructures. Keeping in view the above-mentioned issues, this paper presents an energy-aware graph clustering and intelligent routing (EGCIR) using a supervised system for WSNs to balance the energy consumption and load distribution. Moreover, a secure and efficient key distribution in a hierarchy-based mechanism is adopted by the proposed solution to improve the network efficacy in terms of routes and links integrity. The experimental results demonstrated that the EGCIR protocol enhances the network throughput by an average of 14%, packet drop ratio by an average of 50%, energy consumption by an average of 13%, data latency by an average of 30.2% and data breaches by an average of 37.5% than other state-of-the-art protocols.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 913
Author(s):  
Junaid Anees ◽  
Hao-Chun Zhang ◽  
Sobia Baig ◽  
Bachirou Guene Lougou ◽  
Thomas Gasim Robert Bona

Limited energy resources of sensor nodes in Wireless Sensor Networks (WSNs) make energy consumption the most significant problem in practice. This paper proposes a novel, dynamic, self-organizing Hesitant Fuzzy Entropy-based Opportunistic Clustering and data fusion Scheme (HFECS) in order to overcome the energy consumption and network lifetime bottlenecks. The asynchronous working-sleeping cycle of sensor nodes could be exploited to make an opportunistic connection between sensor nodes in heterogeneous clustering. HFECS incorporates two levels of hierarchy in the network and energy heterogeneity is characterized using three levels of energy in sensor nodes. HFECS gathers local sensory data from sensor nodes and utilizes multi-attribute decision modeling and the entropy weight coefficient method for cluster formation and the cluster head election procedure. After cluster formation, HFECS uses the same techniques for performing data fusion at the first hierarchical level to reduce the redundant information flow from the first-second hierarchical levels, which can lead to an improvement in energy consumption, better utilization of bandwidth and extension of network lifetime. Our simulation results reveal that HFECS outperforms the existing benchmark schemes of heterogeneous clustering for larger network sizes in terms of half-life period, stability period, average residual energy, network lifetime, and packet delivery ratio.


Author(s):  
Mohammed Réda El Ouadi ◽  
Abderrahim Hasbi

The rapid development of connected devices and wireless communication has enabled several researchers to study wireless sensor networks and propose methods and algorithms to improve their performance. Wireless sensor networks (WSN) are composed of several sensor nodes deployed to collect and transfer data to base station (BS). Sensor node is considered as the main element in this field, characterized by minimal capacities of storage, energy, and computing. In consequence of the important impact of the energy on network lifetime, several researches are interested to propose different mechanisms to minimize energy consumption. In this work, we propose a new enhancement of low-energy adaptive clustering hierarchy (LEACH) protocol, named clustering location-based LEACH (CLOC-LEACH), which represents a continuity of our previous published work location-based LEACH (LOC-LEACH). The proposed protocol organizes sensor nodes into four regions, using clustering mechanism. In addition, an efficient concept is adopted to choose cluster head. CLOC-LEACH considers the energy as the principal metric to choose cluster heads and uses a gateway node to ensure the inter-cluster communication. The simulation with MATLAB shows that our contribution offers better performance than LEACH and LOC-LEACH, in terms of stability, energy consumption and network lifetime.


2020 ◽  
Vol 13 (3) ◽  
pp. 353-361
Author(s):  
Veervrat Singh Chandrawanshi ◽  
Rajiv Kumar Tripathi ◽  
Rahul Pachauri ◽  
Nafis Uddin Khan

Background:Wireless Sensor Networks (WSNs) refer to a group of sensors used for sensing and monitoring the physical data of the environment and organizing the collected data at a central location. These networks enjoy several benefits because of their lower cost, smaller size and smarter sensors. However, a limited source of energy and lifetime of the sensors have emerged as the major setbacks for these networks.Methods:In this work, an energy-aware algorithm has been proposed for the transmission of variable data packets from sensor nodes to the base station according to the balanced energy consumption by all the nodes of a WSN.Results:Obtained simulation results verify that the lifetime of the sensor network is significantly enhanced in comparison to other existing clustering based routing algorithm.Conclusion:The proposed algorithm is comparatively easy to implement and achieves a higher gain in the lifetime of a WSN while keeping the throughput nearly same as LEACH protocol.


Author(s):  
Carlos Abreu ◽  
P. M. Mendes

Biomedical wireless sensor networks are a key technology to enable the development of new healthcare services and/or applications, reducing costs and improving the citizen's quality of life. However, since they deal with health data, such networks should implement mechanisms to enforce high levels of quality of service. In most cases, the sensor nodes that form such networks are small and battery powered, and these extra quality of service mechanisms mean significant lifetime reduction due to the extra energy consumption. The network lifetime is thus a relevant feature to ensure the necessary quality of service requirements. In order to maximise the network lifetime, and its ability to offer the required quality of service, new strategies are needed to increase the energy efficiency, and balance in the network. The focus of this work goes to the effective use of the available energy in each node, combined with information about the reliability of the wireless links, as a metric to form reliable and energy-aware routes throughout the network. This paper present and discusses two different deployment strategies using energy-aware routing and relay nodes, assessed for different logical topologies. The authors' conclusion is that the use of energy-aware routing combined with strategic placed relay nodes my increase the network lifetime as high as 45%.


Sign in / Sign up

Export Citation Format

Share Document