Development of Method for Measurement Sound Pressure Level to Use Earphone

2013 ◽  
Vol 717 ◽  
pp. 378-383
Author(s):  
Seok Hoon Kang ◽  
Hyuk Moon

Earphone use has skyrocketed due to the widespread dissemination of portable acoustic-apparatus. As the result, hearing loss due to noise-induced is becoming a big social problem. As the existing method, warning message is only used to prevent the hard of hearing according to the earphone use. However, it is hard for users to know the effect of the hours of earphone use and volume on their hearing, and control the earphone use by themselves. Therefore, in this paper, the method is suggested that users measure the effect of the time and volume of earphone use on their hearing with the simple experimental equipment and program. The method suggested in this paper is based on the simple experimental equipment to set up the similar environment to the real ear, and the program to find out the effect on hearing with the measured data.

Author(s):  
Taehyun Shim

A loud speaker has been widely used as a major actuator in the field of active noise control (ANC). In this paper, the design procedures for a non-ported conventional speaker that must meet restrictive size constraint as well as required sound pressure level at a targeted frequency for an acoustic control was presented. Dynamic model of a speaker that includes linear and nonlinear effects such as radiation resistance on speaker damping, voice coil electrical resistance has been developed and its responses were compared to measured data. The effects of speaker design parameter variations on a sound pressure and power consumption were also assessed experimentally and through simulation. It was found that the simulation results are well collated with experimental data and the desired objective has been met.


2014 ◽  
Vol 598 ◽  
pp. 505-509 ◽  
Author(s):  
Yu Liu ◽  
Ming Bo Tong

In the present study CFD simulation with delayed detached eddy simulation (DDES) are performed to investigate an open cavity at Mach 0.85. Two cavity configurations, clean cavity and cavity with a leading-edge saw tooth spoiler, are modeled. The results obtained from clean cavity prediction are compared with experimental sound pressure level (SPL) data from QinetiQ, UK. Furthermore, comparisons are made with the predicted SPL between the two configurations. The main focuses of this investigation are to obtain a further understanding of the cavity aeroacoustics and test the noise suppression effect by a saw tooth spoiler.


1980 ◽  
Vol 102 (1) ◽  
pp. 19-27 ◽  
Author(s):  
S. Fujii

This paper describes an experimental measurement of the effects of uneven blade spacing on the acoustic and aero-thermodynamic characteristics of high-speed, high-pressure-ratio fan rotors at two selected spacing configurations. A test rig, consisting of inlet guide vanes and transonic rotor blades, was employed to explore the redistribution of harmonic sound energy into a series of multiple tones of lower sound pressure level. The measured data indicated that a ten percent modulated rotor exhibited a six to eight decibel decrease in the sound pressure level as compared with the original first blade passage frequency harmonic. Disadvantages in aerodynamic performance resulting from spacing modulation were not so unfavorable for the ten percent modulated blades. However, with five percent modulated blades, serious deterioration in aerodynamic performance was observed particularly near the blade tip section, which produced an unfavourable acoustic signature. A calculation method, assuming a pulse event for each blade sound pressure, provided agreeable results with the measured data.


2021 ◽  
Vol 11 (14) ◽  
pp. 6400
Author(s):  
Venanzio Giannella ◽  
Claudio Colangeli ◽  
Jacques Cuenca ◽  
Roberto Citarella ◽  
Mattia Barbarino

The work proposes a methodology for the assessment of the performances of Passive Noise Control (PNC) for passenger aircraft headrests with the aim of enhancing acoustic comfort. Two PNC improvements of headrests were designed to reduce the Sound Pressure Level (SPL) at the passengers’ ears in an aircraft cabin during flight; the first was based on the optimization of the headrest shape, whereas the second consisted of partially or fully covering the headrest surface with a new highly sound-absorbing nanofibrous textile. An experimental validation campaign was conducted in a semi-anechoic chamber. A dummy headrest was assembled in different configurations of shape and materials to assess the acoustic performances associated to each set up. In parallel, simulations based on the Boundary Element Method (BEM) were performed for each configuration and an acceptable correlation between experimental and numerical results was obtained. Based on these findings, general guidelines were proposed for the acoustical design of advanced headrests.


2020 ◽  
Vol 63 (4) ◽  
pp. 931-947
Author(s):  
Teresa L. D. Hardy ◽  
Carol A. Boliek ◽  
Daniel Aalto ◽  
Justin Lewicke ◽  
Kristopher Wells ◽  
...  

Purpose The purpose of this study was twofold: (a) to identify a set of communication-based predictors (including both acoustic and gestural variables) of masculinity–femininity ratings and (b) to explore differences in ratings between audio and audiovisual presentation modes for transgender and cisgender communicators. Method The voices and gestures of a group of cisgender men and women ( n = 10 of each) and transgender women ( n = 20) communicators were recorded while they recounted the story of a cartoon using acoustic and motion capture recording systems. A total of 17 acoustic and gestural variables were measured from these recordings. A group of observers ( n = 20) rated each communicator's masculinity–femininity based on 30- to 45-s samples of the cartoon description presented in three modes: audio, visual, and audio visual. Visual and audiovisual stimuli contained point light displays standardized for size. Ratings were made using a direct magnitude estimation scale without modulus. Communication-based predictors of masculinity–femininity ratings were identified using multiple regression, and analysis of variance was used to determine the effect of presentation mode on perceptual ratings. Results Fundamental frequency, average vowel formant, and sound pressure level were identified as significant predictors of masculinity–femininity ratings for these communicators. Communicators were rated significantly more feminine in the audio than the audiovisual mode and unreliably in the visual-only mode. Conclusions Both study purposes were met. Results support continued emphasis on fundamental frequency and vocal tract resonance in voice and communication modification training with transgender individuals and provide evidence for the potential benefit of modifying sound pressure level, especially when a masculine presentation is desired.


1986 ◽  
Vol 29 (3) ◽  
pp. 420-424 ◽  
Author(s):  
Michael Dorman ◽  
Ingrid Cedar ◽  
Maureen Hannley ◽  
Marjorie Leek ◽  
Julie Mapes Lindholm

Computer synthesized vowels of 50- and 300-ms duration were presented to normal-hearing listeners at a moderate and high sound pressure level (SPL). Presentation at the high SPL resulted in poor recognition accuracy for vowels of a duration (50 ms) shorter than the latency of the acoustic stapedial reflex. Presentation level had no effect on recognition accuracy for vowels of sufficient duration (300 ms) to elicit the reflex. The poor recognition accuracy for the brief, high intensity vowels was significantly improved when the reflex was preactivated. These results demonstrate the importance of the acoustic reflex in extending the dynamic range of the auditory system for speech recognition.


2017 ◽  
Vol 68 (1) ◽  
pp. 19-37 ◽  
Author(s):  
Anthony Lodge

Pittenweem Priory began life as the caput manor of a daughter-house established on May Island by Cluniac monks from Reading (c. 1140). After its sale to St Andrews (c. 1280), the priory transferred ashore. While retaining its traditional name, the ‘Priory of May (alias Pittenweem)’ was subsumed within the Augustinian priory of St Andrews. Its prior was elected from among the canons of the new mother house, but it was many decades before a resident community of canons was set up in Pittenweem. The traditional view, based principally on the ‘non-conventual’ status of the priory reiterated in fifteenth-century documents, is that there was ‘no resident community’ before the priorship of Andrew Forman (1495–1515). Archaeological evidence in Pittenweem, however, indicates that James Kennedy had embarked on significant development of the priory fifty years earlier. This suggests that, when the term ‘non-conventual’ is used in documents emanating from Kennedy's successors (Graham and Scheves), we should interpret it more as an assertion of superiority and control than as a description of realities in the priory.


2020 ◽  
Vol 68 (2) ◽  
pp. 137-145
Author(s):  
Yang Zhouo ◽  
Ming Gao ◽  
Suoying He ◽  
Yuetao Shi ◽  
Fengzhong Sun

Based on the basic theory of water droplets impact noise, the generation mechanism and calculation model of the water-splashing noise for natural draft wet cooling towers were established in this study, and then by means of the custom software, the water-splashing noise was studied under different water droplet diameters and water-spraying densities as well as partition water distribution patterns conditions. Comparedwith the water-splashing noise of the field test, the average difference of the theoretical and the measured value is 0.82 dB, which validates the accuracy of the established theoretical model. The results based on theoretical model showed that, when the water droplet diameters are smaller in cooling tower, the attenuation of total sound pressure level of the water-splashing noise is greater. From 0 m to 8 m away from the cooling tower, the sound pressure level of the watersplashing noise of 3 mm and 6 mm water droplets decreases by 8.20 dB and 4.36 dB, respectively. Additionally, when the water-spraying density becomes twice of the designed value, the sound pressure level of water-splashing noise all increases by 3.01 dB for the cooling towers of 300 MW, 600 MW and 1000 MW units. Finally, under the partition water distribution patterns, the change of the sound pressure level is small. For the R s/2 and Rs/3 partition radius (Rs is the radius of water-spraying area), when the water-spraying density ratio between the outer and inner zone increases from 1 to 3, the sound pressure level of water-splashing noise increases by 0.7 dB and 0.3 dB, respectively.


Sign in / Sign up

Export Citation Format

Share Document