Research on the Calculation Method for Diagonal Shear Capacity of Steel Reinforced Lightweight Concrete Beams

2013 ◽  
Vol 724-725 ◽  
pp. 1677-1680
Author(s):  
Huan Jin

Steel reinforced lightweight aggregate concrete structure is a new type of composite structure to meet the building development trend of energy conservation and environmental protection. Based on the shear tests of steel reinforced lightweight concrete beams, according to the specifications of lightweight concrete and steel reinforced concrete, this paper established a design formula for calculating the shear capacity of steel reinforced lightweight concrete beams under the concentrated loads. The results coincided well with the tests. The calculation method is reliable, which can provide theoretical foundations for the practical engineering application of steel reinforced light aggregate concrete beam.

2019 ◽  
Vol 27 (2) ◽  
pp. 64-73
Author(s):  
Sajjad abdulameer Badar ◽  
Laith Shakir Rasheed ◽  
Shakir Ahmed Salih

This paper aims to investigate the structural behavior of reinforced lightweight concrete beams. Attapulgite aggregate and crushed clay brick aggregate were used as coarse lightweight aggregate to produce structural lightweight aggregate concrete with 25 Mpa and 43.6 Mpa cube compressive strength and 1805 Kg/m3 and 1977 Kg/m3 oven dry density respectively. The result of reinforced lightweight concrete beams compared with reinforced normal weight concrete beams, which have 50.5 Mpa cylinder compressive strength and 2317 Kg/m3 oven dry density. For each type of concrete two reinforced concrete beams with (1200 mm length × 180 mm height × 140 mm width), one of them tested under symmetrical two-points load STPL (a/d = 2.2) and another one tested under one-point load OPL (a/d=3.3) at 28 days. The experimental program shows that a structural lightweight aggregate concrete can be produced by using Attapulgite aggregate with 25 MPa cube compressive strength and 1805 Kg/m3 oven dry density and by using crushed clay brick aggregate with 43.6 MPa cube compressive strength and 1977 Kg/m3 oven dry density. The weight of Attapulgite aggregate concrete and crushed clay bricks aggregate concrete beam specimens were lower than normal weight aggregate concrete beams by about 20.56% and 13.65% respectively at 28 days.  As for the ultimate load capacities of beam specimens, the ultimate load of Attapulgite aggregate concrete beams tested under STPL were lower than that of crushed clay bricks aggregate concrete beams and normal weight aggregate concrete beams by about 4.85% and 5% respectively. While the ultimate load capacities of reinforced Attapulgite concrete beams tested under OPL were lower than that of reinforced crushed clay bricks aggregate concrete beams and reinforced normal weight aggregate concrete beams by about 10.3% and 10.5% respectively. Finally, Attapulgite aggregate concrete and crushed clay bricks aggregate concrete showed ductility and toughness less than that of Normal weight aggregate concrete.


2013 ◽  
Vol 857 ◽  
pp. 105-109
Author(s):  
Xiu Hua Zheng ◽  
Shu Jie Song ◽  
Yong Quan Zhang

This paper presents an experimental study on the permeability and the pore structure of lightweight concrete with fly ash, zeolite powder, or silica fume, in comparison to that of normal weight aggregate concrete. The results showed that the mineral admixtures can improve the anti-permeability performance of lightweight aggregate concrete, and mixed with compound mineral admixtures further more. The resistance to chloride-ion permeability of light weight concrete was higher than that of At the same strength grade, the anti-permeability performance of lightweight aggregate concrete is better than that of normal weight aggregate concrete. The anti-permeability performance of LC40 was similar to that of C60. Mineral admixtures can obviously improve the pore structure of lightweight aggregate concrete, the total porosity reduced while the pore size decreased.


2018 ◽  
Vol 926 ◽  
pp. 140-145 ◽  
Author(s):  
Małgorzata Mieszczak ◽  
Lucyna Domagała

The paper presents the results of tests conducted on two lightweight aggregate concretes made of new national Certyd artificial aggregate. This research is intended to first application of lightweight concrete to construct large-span post-tensioned slab. In addition to mechanical properties development, shrinkage and creep during 3 months of loading were tested. The obtained results are compared with theoretical results predicted by standard. Conducted tests indicated, that measured values of shrinkage and creep are significantly lower than predicted ones. This is promise for application of tested concrete in construction of post-tensioned slabs.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Irindu Upasiri ◽  
Chaminda Konthesingha ◽  
Anura Nanayakkara ◽  
Keerthan Poologanathan ◽  
Brabha Nagaratnam ◽  
...  

Purpose In this study, the insulation fire ratings of lightweight foamed concrete, autoclaved aerated concrete and lightweight aggregate concrete were investigated using finite element modelling. Design/methodology/approach Lightweight aggregate concrete containing various aggregate types, i.e. expanded slag, pumice, expanded clay and expanded shale were studied under standard fire and hydro–carbon fire situations using validated finite element models. Results were used to derive empirical equations for determining the insulation fire ratings of lightweight concrete wall panels. Findings It was observed that autoclaved aerated concrete and foamed lightweight concrete have better insulation fire ratings compared with lightweight aggregate concrete. Depending on the insulation fire rating requirement of 15%–30% of material saving could be achieved when lightweight aggregate concrete wall panels are replaced with the autoclaved aerated or foamed concrete wall panels. Lightweight aggregate concrete fire performance depends on the type of lightweight aggregate. Lightweight concrete with pumice aggregate showed better fire performance among the normal lightweight aggregate concretes. Material saving of 9%–14% could be obtained when pumice aggregate is used as the lightweight aggregate material. Hydrocarbon fire has shown aggressive effect during the first two hours of fire exposure; hence, wall panels with lesser thickness were adversely affected. Originality/value Finding of this study could be used to determine the optimum lightweight concrete wall type and the optimum thickness requirement of the wall panels for a required application.


1986 ◽  
Vol 13 (6) ◽  
pp. 741-751 ◽  
Author(s):  
R. Basset ◽  
S. M. Uzumeri

This paper summarizes an experimental investigation into the behaviour of high strength sand – lightweight concrete columns confined with rectangular ties. Fifteen reinforced and three unreinforced specimens were tested under monotonically increasing axial compression. Variables considered in this study were the longitudinal steel distribution and tie configuration, the tie steel spacing, the amount of tie steel, and the amount of longitudinal steel.The results indicated that unconfined high-strength lightweight aggregate concrete is a brittle material. The addition of lateral confining steel significantly improved the behaviour of this material, with a large amount of lateral steel resulting in very ductile behaviour. The tie configuration and resulting distribution of longitudinal steel contributed significantly to the confinement of concrete, with well-distributed steel resulting in improved behaviour. The ratio of specimen to cylinder concrete strength was observed to be 0.98, which is much higher than the commonly assumed value of 0.85.The test results were compared with results from selected theoretical confinement models. Based on the results of this investigation, existing models for concrete confinement give unconservative results for high-strength lightweight aggregate concrete and overestimate the ductility that can be achieved with this material. Key words: columns, confinement, ductility, high-strength concretes, lightweight aggregate concretes, reinforcement, stress–strain relationships, tests, ties, toughness.


2013 ◽  
Vol 739 ◽  
pp. 251-254
Author(s):  
Ru Jie Huang ◽  
Chen Shi ◽  
Guo Xin Li

Lightweight aggregate concrete has lower density and lower elasticity modulus, so it has better earthquake resistance. But the low strength limited the application of lightweight concrete. Steel fiber can improve the strength of lightweight aggregate concrete. In this paper, the influences of different lengths of steel fiber on the slump, compressive strength, splitting tensile strength and antiflex cracking strength are investigated. The results show that adding steel fiber reduces the workability of the concrete mixture, but it improved the each strength of light weight concrete and different lengths have the different regularity of effects.


Sign in / Sign up

Export Citation Format

Share Document