scholarly journals Flexural cracks in steel fiber-reinforced lightweight aggregate concrete beams reinforced with FRP bars

2020 ◽  
Vol 253 ◽  
pp. 112752
Author(s):  
Xi Liu ◽  
Yijia Sun ◽  
Tao Wu ◽  
Yang Liu
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Shunbo Zhao ◽  
Changyong Li ◽  
Mingshuang Zhao ◽  
Xiaoyan Zhang

Steel fiber reinforced lightweight-aggregate concrete (SFRLAC) has many advantages applied in structural engineering. In this paper, the autogenous shrinkage and drying shrinkage of SFRLAC for up to 270 days were measured, considering the effects of types of coarse and fine aggregates with the changes of water-to-binder ratio and volume fraction of steel fiber, respectively. The properties of mix workability, apparent density, and compressive strength of SFRLAC were also reported and discussed in relation to above factors. Test results show that the development of autogenous and drying shrinkage of SFRLAC was fast within 28 days and tended to be steady after 90 days. The development of autogenous shrinkage of SFRLAC reduced with the increasing water-to-binder ratio and by using the expanded shale with higher soundness and good water absorption, especially at early age within 28 days; the later drying shrinkage was reduced and the development of drying shrinkage was slowed down with the increasing volume fraction of steel fiber obviously; manufactured sand led to less autogenous shrinkage but greater drying shrinkage than fine lightweight aggregate in SFRLAC. The regularities of autogenous shrinkage and drying shrinkage of SFRLAC expressed as the series of hyperbola are analyzed.


2011 ◽  
Vol 250-253 ◽  
pp. 609-613 ◽  
Author(s):  
Hong Wei Song ◽  
Hai Tao Wang

The impact resistance of steel fiber reinforced lightweight aggregate concrete was presented in a drop weight test. In this test, 5 groups of disc specimens with different steel fiber volumes including 0.0%, 0.5%, 1.0%, 1.5% and 2.0% were tested. The experimental results indicated that the impact resistance of lightweight aggregate concrete is improved with the increase in fiber volume. As the variation in experimental results, a statistical evaluation was performed to study the influence of impact resistance of steel fiber reinforced lightweight aggregate concrete with different steel fiber volumes. Further more, the impact resistance was simulated with probability distribution by Log-normal method. And the goodnees-of-fit tests indicate that the Log-normal method has good fitness to the impact resistance of steel fiber reinforced lightweight aggregate concrete.


2011 ◽  
Vol 197-198 ◽  
pp. 911-914 ◽  
Author(s):  
Li Yun Pan ◽  
Hao Yuan ◽  
Shun Bo Zhao

Tests were carried out to study mechanical properties of hybrid fiber reinforced full lightweight aggregate concrete (HFRFLAC), the hybrid fiber was composed by steel fiber and polypropylene fiber, the expanded-shale and lightweight sand were used as coarse and fine aggregates. The apparent density and strengths in cubic compressive, splitting tensile and flexural tensile states of HFRFLAC were obtained. The results show that the average dry apparent density increases with the increasing cement content, which is much more affected by fraction of steel fiber by volume than mass content of polypropylene fiber; the tensile strengths increase somewhat with the increasing mass content of polypropylene fiber; all of the strengths increase with the increasing fraction of steel fiber by volume, and obvious are the enhancement of tensile strengths; there are somewhat relevance between the effects of polypropylene fiber and steel fiber on mechanical properties of HFRFLAC.


2021 ◽  
pp. 136943322110433
Author(s):  
Yijia Sun ◽  
Tao Wu ◽  
Xi Liu

Six lightweight aggregate concrete (LWC) beams reinforced with carbon fiber–reinforced polymer (CFRP) bars were tested under a four-point bending load with different steel fiber contents, reinforcement ratios, and clear span lengths to investigate their flexural behavior and serviceability performance. The test results showed that using steel fiber–reinforced lightweight aggregate concrete (SFLWC) and increasing the reinforcement ratio enhanced the serviceability performance of the beams. The incorporation of 0.6% by volume of steel fibers reduced the midspan deflection by 22.70%–36.87% at the same load level in service stage. At service load, all the CFRP-reinforced beams exhibited conservative deflections when compared to the deflection limits recommended by ACI 440.1 R and GB 50608, and satisfied the crack width limit of 0.7 mm. Comparing the measured maximum crack widths with the corresponding predictions revealed that the bond-dependent coefficient value of 1.4 specified in ACI 440.1 R was reasonable yet conservative. Moreover, an energy-based method was adopted to quantify the influence of the fibers on the beam stiffness. On this basis, a rational deflection model for SFLWC beams reinforced with CFRP bars was suggested.


Sign in / Sign up

Export Citation Format

Share Document