Removal of Phenol in Waste Water with Activated Carbon Prepared from Corncob Xylitol Residue

2013 ◽  
Vol 726-731 ◽  
pp. 2270-2273
Author(s):  
Jing Wen Xue ◽  
Shi Shuai Gao ◽  
Chun Hua Yin ◽  
Zheng Heng Li

Corncob xylitol residue was soaked with H3PO4 for 16h and carbonized in microwave for 9min to obtain activated carbon. The adsorbing property of the activated carbon was investigated. Results showed phenol could be adsorbed effectively by activated carbon and the optimum adsorbing condition was: 20°C, 2h, pH 3-4. Increasing the amount of activated carbon could adsorb more phenol, and this effect was not apparent when the amount of activated carbon was more than 0.5g when adsorbing 100mL of 200mg/L phenol solution.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ridlo Barkah Jembar Pinanggih ◽  
Dyah Ratri Nurmaningsih ◽  
Sulistiya Nengse ◽  
Teguh Taruna Utama ◽  
Abdul Hakim

Permasalahan air limbah di Indonesia merupakan isu pencemaran lingkungan yang strategis dalam pembangunan berkelanjutan, baik yang bersumber dari pemukiman penduduk maupun unit usaha perkantoran. Tingginya kandungan organik terlarut di dalam air limbah dapat menyebabkan penurunan intesitas masuknya cahaya matahari yang dibutuhkan oleh mikroorganisme fotosintetik dan berdampak pada penurunan kualitas badan air. Tujuan dari penelitian ini yaitu merencankan pembangunan unit Instalasi Pengolahan Air Limbah (IPAL) domestik di Kantor Pusat PT. Pertamina Marketing Operation Region (MOR) V Surabaya dengan menggunakan kombinasi unit biofilter aerobik dan adsorpsi karbon aktif beserta perhitungan volume bangunan dan Rencana Anggaran Biaya (RAB) yang dibutuhkan. Teknologi pengolahan ini dipilih karena memiliki keunggulan dalam meremoval kadar pencemar organik dengan tingkat efisiensi yang tinggi dan kebutuhan lahan yang tidak terlalu luas. Metode penelitian menggunakan data sekunder yang diperoleh dari data perusahaan berupa debit pemakaian air bersih, layout kantor, data kualitas air limbah, serta informasi lain yang terkait dengan perencanaan. Hasil penelitian yang didapat berupa gambar desain (DED) unit IPAL, dimensi total bangunan pengolah seluas 34m2(P=17m dan L=2m), spesifikasi bahan yang digunakan, serta rencana anggaran biaya yang dibutuhkan untuk pembangunan kontruksi unit IPAL yaitu sebesar Rp243.136.020,00. Perencanaan ini juga ditunjang dengan panduan dalam operasional dan perawatan unit IPAL.  Kata kunci: Adsorpsi karbon aktif, air limbah domestik, biofilter aerobik, desain IPAL. The problem of wastewater in Indonesia is a strategic issue of environmental pollution in sustainable development, both sourced from residential areas and office business units. The high dissolved organic content in wastewater can cause a decrease in the intensity of sunlight needed by photosynthetic microorganisms and have an impact on the quality of water bodies. The purpose of this study is to plan the construction of a domestic Waste Water Treatment Plant (WWTP) at the Head Office of PT. Pertamina Marketing Operation Region (MOR) V Surabaya using a combination of aerobic biofilter units and activated carbon adsorption along with the calculation of building volume and the required Budget Plan. This processing technology was chosen because it has advantages in renovating organic pollutant levels with a high level of efficiency and land requirements that are not too broad. The research method uses secondary data obtained from company data in the form of debit of clean water usage, office layout, waste water quality data, and other information related to planning. The results obtained in the form of design drawings (DED) of WWTP units, the total dimensions of the processing plant area of 34m2 (P = 17m and L = 2m), as well as the material specifications used, as well as the budget plan required for the construction of WWTP unit construction is Rp243. 136,020.00. This planning is also supported by guidelines in the operation and maintenance of WWTP units. Keywords: Activated carbon adsorption, aerobic biofilter, domestic wastewater, WWTP design.


2013 ◽  
Vol 295-298 ◽  
pp. 1793-1797
Author(s):  
Lan Qiang Tian ◽  
Na Li ◽  
Qing Wei Ping ◽  
Jian Zhang ◽  
Hai Qing Shi

The waste liquor from the first cooking stage of reed three-stage counter-current batch cooking with ethanol-water process was decolorized by preliming, sulfitation and activated carbon absorption combination method. The preliming temperature, calcium superphosphate dosage, pH Value, Na2SO3dosage in preliming and sulfitation, column height and velocity in activated carbon absorption have effect on decolorization. The results indicated that the 50 mL un decolorized waste liquor have the best decolorizing effect when the preliming temperature was 80°C, calcium superphosphate dosage was 1 g, pH value was 7, Na2SO3dosage was 0.04 mol, column height was 12 cm and velocity was 2mL/min, the decolorized rate of waste liquor could be up to 98.1%.


2014 ◽  
Vol 22 (8) ◽  
pp. 5780-5792 ◽  
Author(s):  
O. F. Olorundare ◽  
T. A. M. Msagati ◽  
R. W. M. Krause ◽  
J. O. Okonkwo ◽  
B. B. Mamba

2014 ◽  
Vol 1015 ◽  
pp. 385-388 ◽  
Author(s):  
Jie Deng

Design a set of practical and effective hydraulic cavitation experiment device, hydraulic cavitation reactor, using porous plate for nitro phenol solution to simulate wastewater, respectively in different cavitation number initial pH value, initial concentration of the waste water, waste water, the cycle time, use different types of porous surface processing and analysis, through the experimental research, it is concluded that these factors and the relationship of nitro phenol degradation rate.


2012 ◽  
Vol 60 (2) ◽  
pp. 185-189 ◽  
Author(s):  
Mohammad Arifur Rahman ◽  
S. M. Ruhul Amin ◽  
A. M. Shafiqul Alam

The possible utilization of rice husk activated carbon as an adsorbent for the removal of methylene blue dye from aqueous solutions has been investigated. In this study, activated carbons, prepared from low-cost rice husk by sulfuric acid and zinc chloride activation, were used as the adsorbent for the removal of methylene blue, a basic dye, from aqueous solutions. Effects of various experimental parameters, such as adsorbent dosage and particle size, initial dye concentration, pH and flow rate were investigated in column process. The maximum uptakes of methylene blue by activated rice husk carbon at optimized conditions (particle sizes: 140 ?m; Flow rate: 1.4 mL/min; pH: 10.0; initial volume of methylene blue: 50 mL and initial concentration of methylene blue: 4.0 mg/L etc.) were found to 97.15%. The results indicate that activated carbon of rice husk could be employed as low-cost alternatives to commercial activated carbon in waste water treatment for the removal of basic dyes. This low cost and effective removal method may provide a promising solution for the removal of crystal violet dye from wastewater.DOI: http://dx.doi.org/10.3329/dujs.v60i2.11491 Dhaka Univ. J. Sci. 60(2): 185-189, 2012 (July)


2007 ◽  
Vol 9 (3) ◽  
pp. 118-121 ◽  
Author(s):  
Jerzy Myszkowski ◽  
Eugeniusz Milchert ◽  
Waldemar Paździoch ◽  
Robert Pełech

Formation of environmentally friendly chloroorganic compounds technology by sewage and by-products utilization The processes presented in the study enables the separation and disposal of the chloroorganic compounds as by-products from the vinyl chloride plant by using the dichlorethane method and also from the production of propylene oxide by the chlorohydrine method. The integrated purification method of steam stripping and adsorption onto activated carbon allows a complete removal and recovery of the chloroorganic compounds from waste water. Waste distillation fraction is formed during the production of vinyl chloride. 1,1,2-trichloroethane separated from the above fraction, can be processed to vinylidene chloride and further to 1,1,1-trichloroethane. 2,3-Dichloropropene, 2-chloroallyl alcohol, 2-chloroallylamine, 2-chlorothioallyl alcohol or bis(2-chloroallylamine) can be obtained from 1,2,3-trichloropropane. In the propylene oxide plant the waste 1,2-dichloropropane is formed, which can be ammonolysed to 1,2-diaminopropane or used for the production of β-methyltaurine. Other chloroorganic compounds are subjected to chlorinolysis which results in the following compounds: perchloroethylene, tetrachloromethane, hexachloroethane, haxachlorobutadiene and hexachlorobenzene. The substitution of the milk of lime by the soda lye solution during the saponification of chlorohydrine eliminates the formation of the CaCl2 waste.


Sign in / Sign up

Export Citation Format

Share Document