Performance Characterization of a Piezoelectric Micro SJA

2009 ◽  
Vol 74 ◽  
pp. 223-226
Author(s):  
An Shik Yang ◽  
Jeng Jong Ro ◽  
Wei Han Chang

This paper aims to explore the synthetic jet behavior for a dual-diaphragm piezoelectrically driven micro synthetic jet actuator. For a sinusoidal actuation cycle at an operating frequency of 648 Hz, the synthetic jet flow pattern was simulated and compared with the visualized image and measured centerline velocity distribution to validate the computer code. The far-field flow structure was similar to a common continuous turbulent air jet; whereas, the unsteady formation of a vortex pair was predicted in the near-field. Numerical experiments were extended to appraise performance of micro synthetic jet actuators by varying the driving voltage, width of the slot and depth of the actuator cavity.

2006 ◽  
Vol 110 (1108) ◽  
pp. 385-393 ◽  
Author(s):  
M. Jabbal ◽  
J. Wu ◽  
S. Zhong

AbstractPIV measurements in the near-field region of a jet flow emanating from a round synthetic jet actuator into quiescent air were conducted over a range of operating conditions. The primary purpose of this work was to investigate the nature of synthetic jets at different operating conditions and to examine the jet flow parameters that dictate the behaviour of synthetic jet actuators. The effects of varying diaphragm displacement and oscillatory frequency for fixed actuator geometry were studied. It was observed that the characteristics of synthetic jets are largely determined by the Reynolds number and stroke length. An increase in the former is observed to increase the strength of consecutive vortex rings that compose a synthetic jet, whereas an increase in the latter results in an increase in relative vortex ring spacing and for further increases in stroke length, shedding of secondary vortices. Correlations were also made between the operating parameters and the performance parameters most effective for flow control and which therefore determine the impact of a synthetic jet on an external flow. Relations of time-averaged dimensionless mass flux, momentum flux and circulation with the jet flow conditions were established and found to widely support an analytical performance prediction model described in this paper. It is anticipated that the experimental data obtained in this study will also contribute towards providing a PIV database for macro-scale synthetic jet actuators.


Author(s):  
F. L. Hew ◽  
V. Timchenko ◽  
J. A. Reizes ◽  
E. Leonardi

In this study the effects of having multiple synthetic jet actuators and multiple orifices in a single jet actuator on creating better flow mixing and improving heat transfer in micro-channels have been investigated numerically. Unsteady computations of laminar flow have been performed for two dimensional configurations of micro-channel open at either end. A constant heat flux of 1 MWm−2 at the top of the silicon wafer represented the heat generated by the microchip. Synthetic jet actuators were attached to the bottom wall of the channel, with the 50 μm wide orifice. It is shown that by using double orifices single synthetic jet actuator, the heat transfer enhancement in micro-channels can be greatly improved. At the end of 30 cycles of actuation, the maximum temperature in the wafer has been reduced by approximately 27 K and the minimum temperature on the bottom of the wafer has been reduced by approximately 19 K in comparison with the steady flow values. In comparison with a single orifice synthetic jet actuator, double orifices synthetic jet actuator led to an additional 10 K reduction of the maximum temperature in wafer and 4 K reduction of minimum temperature on the interface of the wafer and water. It was demonstrated that the number of synthetic jet actuators is not the main factor influencing the thermal performance. The crucial factor is the number of impinging jets generated from the orifice which encourages better mixing in the flow. However, there is a distinct advantage associated with having multiple jet actuators in that out of phase flow could be generated which led to even lower temperatures than the in-phase jets.


Meccanica ◽  
2018 ◽  
Vol 53 (11-12) ◽  
pp. 2883-2896 ◽  
Author(s):  
Matteo Chiatto ◽  
Francesco Capuano ◽  
Luigi de Luca

2005 ◽  
Vol 19 (28n29) ◽  
pp. 1619-1622 ◽  
Author(s):  
ZHEN-BING LUO ◽  
ZHI-XUN XIA

The control mechanism of jet vectoring using synthetic jet actuators is investigated. The final deflection angle of the primary jet is a result of the primary jet controlled by synthetic jets at three different regions. The lower static pressure near the primary jet exit induced by the synthetic jet, the entrainment and absorption of the primary jet fluid by the synthetic jet during the blowing and the suction stroke, the coupling and interaction between the vortices of synthetic jet and the shear layer of the primary jet are the main control mechanisms for the synthetic jet actuator vectoring a primary jet. The main factors influencing jet vectoring are analyzed and summarized, and a preparatory model for jet vectoring using synthetic jet actuator is presented.


Author(s):  
Ruixian Fang ◽  
Wei Jiang ◽  
Jamil Khan ◽  
Roger Dougal

The present study experimentally investigated a new hybrid cooling scheme by combination of a microchannel heat sink with a micro-synthetic jet actuator. The heat sink consisted of a single rectangular microchannel measured 550 μm wide, 500 μm deep and 26 mm long. The synthetic jet actuator with a 100 μm diameter orifice was placed right above the microchannel and 5 mm downstream from the channel inlet. Micro jet is synthesized from the fluid flowing through the microchannel. Periodic disturbance is generated when the synthetic jet interacts with the microchannel flow. Heat transfer performance is enhanced as local turbulence is generated and propagated downstream the microchannel. The scale and frequency of the disturbance can be controlled by changing the driving voltage and frequency of the piezoelectric driven synthetic jet actuator. The effects of synthetic jet on microchannel heat transfer performance were studied based on the microchannel flow Reynolds number, the jet operating voltage and frequency, respectively. It shows that the synthetic jet has a greater heat transfer enhancement for microchannel flow at lower Reynolds number. It also shows that the thermal effects of the synthetic jet are functions of the jet driving voltage and frequency. We obtained around 42% heat transfer enhancement for some test cases, whereas the pressure drop across the microchannel increases very slightly. The paper concludes that the synthetic jet can effectively enhance single-phase liquid microchannel heat transfer performance and would have more promising enhancements if multi-jets are applied along the microchannel.


2009 ◽  
Vol 21 (4) ◽  
pp. 043602 ◽  
Author(s):  
Arvind Santhanakrishnan ◽  
Daniel A. Reasor ◽  
Raymond P. LeBeau

Author(s):  
Maria Wu ◽  
Pierre Sullivan

Abstract A compact, lightweight, low-power piezoelectric micro-blower was characterized using particle image velocimetry to determine its flow control potential. The micro-blower has been operated in continuous mode as well as in burst mode using two different actuation frequencies. The maximum mean velocity measured with the micro-blower operating in continuous mode was approximately Ūmax = 13 m/s which occurred at the centerline at an approximate stream-wise location of x/d = 4. The velocity profiles in the developed region resemble those of turbulent jets. The momentum-flux from the micro-blower in continuous mode was significantly greater than a typical synthetic jet actuator which was successfully used for flow control, indicating that the micro-blower can impart the necessary momentum to be effective for flow control. With burst mode, the results show that the micro-blower could impart an even greater momentum.


Sign in / Sign up

Export Citation Format

Share Document