Short Term Load Forecasting Based on PCA and LS-SVM

2013 ◽  
Vol 756-759 ◽  
pp. 4193-4197 ◽  
Author(s):  
Ren Ran Wei ◽  
Zhen Zhu Wei ◽  
Rong Rong ◽  
Yi Wang ◽  
Jian Dong Jiang ◽  
...  

In this paper, in order to improve the precision of the short-term load forecasting, we propose a power load forecasting method combined principal component analysis (PCA) with least squares support vector machine (LS-SVM). Firstly PCA extracts the feature of the influence factors for power load, and then LS-SVM constructs a training model with a new variables extracted by PCA. After using PCA-LS-SVM model this paper proposed to forecast power load of one area, the results show that this method can effectively eliminate the redundant information among influential factors, reduce the input dimension of the prediction model, simplify the structure of the network, increase the learning speed and improve the power load forecasting accuracy. So this method is effectively feasible.

2004 ◽  
Vol 14 (05) ◽  
pp. 329-335 ◽  
Author(s):  
LIANG TIAN ◽  
AFZEL NOORE

A support vector machine (SVM) modeling approach for short-term load forecasting is proposed. The SVM learning scheme is applied to the power load data, forcing the network to learn the inherent internal temporal property of power load sequence. We also study the performance when other related input variables such as temperature and humidity are considered. The performance of our proposed SVM modeling approach has been tested and compared with feed-forward neural network and cosine radial basis function neural network approaches. Numerical results show that the SVM approach yields better generalization capability and lower prediction error compared to those neural network approaches.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1617
Author(s):  
Kang Qian ◽  
Xinyi Wang ◽  
Yue Yuan

Integrated energy services will have multiple values and far-reaching significance in promoting energy transformation and serving “carbon peak and carbon neutralization”. In order to balance the supply and demand of power system in integrated energy, it is necessary to establish a scientific model for power load forecasting. Different algorithms for short-term electric load forecasting considering meteorological factors are presented in this paper. The correlation between electric load and meteorological factors is first analyzed. After the principal component analysis (PCA) of meteorological factors and autocorrelation analysis of the electric load, the daily load forecasting model is established by optimal support vector machine (OPT-SVM), Elman neural network (ENN), as well as their combinations through linear weighted average, geometric weighted average, and harmonic weighted average method, respectively. Based on the actual data of an industrial park of Nantong in China, the prediction performance in the four seasons with the different models is evaluated. The main contribution of this paper is to compare the effectiveness of different models for short-term electric load forecasting and to give a guideline to build the proper methods for load forecasting.


2011 ◽  
Vol 127 ◽  
pp. 569-574
Author(s):  
Dong Liang Li ◽  
Xiao Feng Zhang ◽  
Ming Zhong Qiao ◽  
Gang Cheng

The power load characteristics of warship on a specific task was analyzed,and a task-based forecasting method for warship short-term load forecasting was presented. the new influencing factors of warship power load were used in modeling which is different with the land grid and civilian vessels grid. Theory of particle swarm optimization and Support vector machine was disscused first, and the method of particle swarm optimization was improved to have the ability of adaptive parameter optimization. and the method of support vector machine was improved by the adaptive PSO optimizational method. then a new adaptive short-term load forecasting model was established by the adaptive PSO-SVM method. finally Through simulation results show that the adaptive PSO-SVM method is highly feasible to predict with high accuracy and high generalization capability.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhuowei Yu ◽  
Jiajun Yang ◽  
Yufeng Wu ◽  
Yi Huang

Since 2020, the COVID-19 has spread globally at an extremely rapid rate. The epidemic, vaccination, and quarantine policies have profoundly changed economic development and human activities worldwide. As many countries start to resume economic activities aiming at a “living with COVID” new normal, a short-term load forecasting technique incorporating the epidemic’s effects is of great significance to both power system operation and a smooth transition. In this context, this paper proposes a novel short-term load forecasting method under COVID-19 based on graph representation learning with heterogeneous features. Unlike existing methods that fit power load data to time series, this study encodes heterogeneous features relevant to electricity consumption and epidemic status into a load graph so that not only the features at each time moment but also the inherent correlations between the features can be exploited; Then, a residual graph convolutional network (ResGCN) is constructed to fit the non-linear mappings from load graph to future loads. Besides, a graph concatenation method for parallel training is introduced to improve the learning efficiency. Using practical data in Houston, the annual, monthly, and daily effects of the crisis on power load are analyzed, which uncovers the strong correlation between the pandemic and the changes in regional electricity utilization. Moreover, the forecasting performance of the load graph-based ResGCN is validated by comparing with other representative methods. Its performance on MAPE and RMSE increased by 1.3264 and 15.03%, respectively. Codes related to all the simulations are available on https://github.com/YoungY6/ResGCN-for-Short-term-power-load-forecasting-under-COVID-19.


Sign in / Sign up

Export Citation Format

Share Document