The Reverse-Engineering-Based Design of Three-Dimensional CAD Parameterized Organic Morphology Mold

2013 ◽  
Vol 756-759 ◽  
pp. 4429-4432
Author(s):  
Wu Ye ◽  
Ruo Yu Liang

Gives the method of 3D CAD parametric design under the guidance of the theory of reverse engineering. Describes the application of the method development process of complex-shaped surface mold. Analysis of the mold characteristics, coordinate measuring equipment accurate and efficient access to the basic outline of the data, the integration of CAD software to design mold forms, re-use processing module directly form processing code, complete mold processing and validation.

2016 ◽  
Vol 4 ◽  
pp. 803-806 ◽  
Author(s):  
Mert Gürgen ◽  
Cenk Eryılmaz ◽  
Vasfi Emre Ömürlü

This article describes a sophisticated determination and presentation of a workspace volume for a delta robot, with consideration of its kinematic behavior. With the help of theoretical equations, optimization is performed with the aid of the stiffness and dexterity analysis. Theoretical substructure is coded in Matlab and three-dimensional (3D) data for delta robot are developed in computer-aided design (CAD) environment. In later stages of the project, both 3D and theoretical data are linked together and thus, with the changing design parameter of the robot itself, the Solidworks CAD output adapts and regenerates output with a new set of parameters. To achieve an optimum workspace volume with predefined parameters, a different set of robot parameters are iterated through design optimization in Matlab, and the delta robot design is finalized and illustrated in the 3D CAD environment, Solidworks. This study provides a technical solution to accomplish a generic delta robot with optimized workspace volume.


2017 ◽  
Vol 29 (4) ◽  
pp. 504-513
Author(s):  
Long Wu ◽  
Kit-Lun Yick ◽  
Joanne Yip ◽  
Sun-Pui Ng

Purpose One of the crucial steps in the molded bra production is the process of developing the mold head. The purpose of this paper is to determine the final cups style and size. Compared with traditional development process of the mold head, less time-consuming and a more quantitative method is needed for the design and modification of the mold head. Design/methodology/approach A three-dimensional (3D) numerical model for the simulation of large compressive deformation was built in this paper to research the foam bra cup molding process. Since the head cones have more representative than the mold heads, the male and female head cones were used in the simulation. All of the solid shapes are modeled by using 3D Solid 164 elements as well as an automatic surface-to-surface contact between head cones. Findings Simulation of the foam cup molding process is conducted by inputting different properties of the foam material and stress-strain curves under different molding temperatures. Research limitations/implications In order to simulate the laminated foam moulding process, heat transfer through a layered textile assembly can be studied by using the thermo-mechanical coupled FE model. Practical implications According to the different foam performance parameters under different temperatures along with different head cone shapes, distribution and variation in the stress field can be obtained as well as the ultimate capacity of foam materials. Social implications A computer-aided parametric design system for the mold heads provides an effective solution to improving the development process of mold heads. Originality/value The distribution and variation in the stress fields can be analyzed through simulation, providing a reference for the mold head design.


Author(s):  
S. M. Karabanov ◽  
◽  
A. E. Serebryakov ◽  
O. A. Belyakov ◽  
D. V. Suvorov ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Liqun Dong ◽  
Junwei Zhang ◽  
Liang Qin ◽  
Ping Xue ◽  
Yun Ma ◽  
...  

Abstract Owing to the existence of the cone angle, the size of a conical counter-rotating twin screw continuously changes along the axis, so it is not easy to model using SolidWorks. In this study, the parametric design of the modeling process is completed based on the Visual Basic language and a program-driven method. Finally, the SolidWorks program plug-in and user interface are developed to complete the automatic generation of the three-dimensional model of a conical counter-rotating twin screw.


2001 ◽  
Vol 02 (03) ◽  
pp. 317-329 ◽  
Author(s):  
MUSTAFA MAT DERIS ◽  
ALI MAMAT ◽  
PUA CHAI SENG ◽  
MOHD YAZID SAMAN

This article addresses the performance of data replication protocol in terms of data availability and communication costs. Specifically, we present a new protocol called Three Dimensional Grid Structure (TDGS) protocol, to manage data replication in distributed system. The protocol provides high availability for read and write operations with limited fault-tolerance at low communication cost. With TDGS protocol, a read operation is limited to two data copies, while a write operation is required with minimal number of copies. In comparison to other protocols. TDGS requires lower communication cost for an operation, while providing higher data availability.


Author(s):  
Noboru Narikawa ◽  
Kazuo Takahashi

Abstract This paper gives an overview of a collaborative design system (CDS) for electromechanical products. To reduce design costs and to manufacture high-quality products, it is well known that concurrent engineering (CE) is a very efficient approach. Three-dimensional (3D) CAD system and engineering database system are essential components of CE. The CDS is an environment to realize CE. By creating 3D models in a computer and performing some simulations such as mechanical, electronic, software simulation and integrated simulations, it is possible to estimate functions, assemblability, manufacturability and so on, before making prototype models. In this paper, we outline the CDS and mainly discuss the total information management system (TIMS) which makes an important role of the CDS. This paper describes the implementation experience of some functions of the TIMS.


2017 ◽  
Vol 2 (Suppl. 1) ◽  
pp. 1-10 ◽  
Author(s):  
Denis Lacombe ◽  
Lifang Liu ◽  
Françoise Meunier ◽  
Vassilis Golfinopoulos

There is room for improvement for optimally bringing the latest science to the patient while taking into account patient priorities such as quality of life. Too often, regulatory agencies, governments, and funding agencies do not stimulate the integration of research into care and vice versa. Re-engineering the drug development process is a priority, and healthcare systems are long due for transformation. On one hand, patients need efficient access to treatments, but despite precision oncology approaches, efficiently shared screening platforms for sorting patients based on the biology of their tumour for trial access are lacking and, on the other hand, the true value of cancer care is poorly addressed as central questions such as dose, scheduling, duration, and combination are not or sub-optimally addressed by registration trials. Solid evidence on those parameters could potentially lead to a rational and wiser use of anti-cancer treatments. Together, optimally targeting patient population and robust comparative effectiveness data could lead to more affordable and economically sound approaches. The drug development process and healthcare models need to be interconnected through redesigned systems taking into account the full math from drug development into affordable care.


2018 ◽  
Vol 178 ◽  
pp. 03013 ◽  
Author(s):  
Stergios Fragkos ◽  
Emanuel Tzimtzimis ◽  
Dimitrios Tzetzis ◽  
Oana Dodun ◽  
Panagiotis Kyratsis

The current paper demonstrates the digital recreation and 3D printing of a missing fragment of an ancient ceramic pottery following digitization using a three dimensional laser scanning. The resulting pointcloud of the laser scans was treated with a series of advanced software for the creation of surfaces and ultimately for a digital model. An analytical methodology is presented revealing the step by step approach, which is an innovative way of recreating a missing fragment. Such approach aims to demonstrate the level of contribution that the ever evolving computer based technologies and 3D printing could bring to cultural heritage. The reverse engineering method presented for the reconstruction of a ceramic pottery, which is a part of the larger field of digital archaeology, is believed to benefit a variety of interested parties including 3D CAD users and designers, archaeologists and museum curators.


Sign in / Sign up

Export Citation Format

Share Document