Comparison of Performance and Emission Characteristic of Tamanu, Mahua and Pongamia Biodiesel in a Di Diesel Engine

2013 ◽  
Vol 768 ◽  
pp. 218-225 ◽  
Author(s):  
M. Parthasarathy ◽  
J. Isaac Joshua Ramesh Lalvani ◽  
B. Parthiban ◽  
K. Annamalai

Random extraction and consumption of fossil fuels have leads to a reduction in petroleum reserves. As for as developing countries like India is connected the need to search for alternative fuels is most urgent as India is heavily dependent upon the import of petroleum to meet its demands for automotive and power sectors. This has inspired curiously in alternative sources for petroleum based fuels. An alternative fuel must be economically competitive and environmentally acceptable. India has great potential for production of biofuels like Biodiesel from vegetable seeds. In the quest to find an alternative to the existing diesel and petrol fuels various Biodiesel and alcohol has been tried and tested in the Internal Compression engine. In this direction, an attempt has been made to investigate the performance and emission characteristic of Biodiesels and compare it with diesel. The Biodiesels considered are Tamanu, Mahua and Pongamia were tested with four stroke diesel engine. A drastic improvement in reduction of Hydrocarbon (HC) and Carbon monoxide (CO) were found for Biodiesels at high engine loads. Smoke and Nitrogen oxides (NOx) were slightly higher for Biodiesels. Biodiesels exposed similar combustion stages to diesel fuel. Therefore use of transesterified vegetable oils can be partially substituted for the diesel fuel at most operating conditions in term of the performance parameters and emissions without any engine modification.

2018 ◽  
Vol 24 (8) ◽  
pp. 5712-5717 ◽  
Author(s):  
Praveen Anchupogu ◽  
G. Lakshmi Narayana Rao ◽  
B Balakrishna ◽  
B. Ravi Sankar ◽  
P Umamaheswarrao

Development of environmental friendly fuels is the ever constant endeavor in the field of engine technology. Owing to the merits of Diesel fuel, number of vehicles operated with Diesel are increased to meet the needs of multiplied population. However, depletion of fossil fuels and environmental pollution are the main concerns with the diesel engines. Usage of bio-fuel is found to be the prominent technology in compensating fossil fuels depletion, whereas emission control is a major setback. Suspension of nano particles in the conventional fuels termed as Nanofuel is the prominent technology in emission control. Hence, the present work is aimed to investigate the influence of TiO2 nano particulate in Diesel on the performance and emission characteristic of single cylinder Diesel engine. From the experimental results it is observed that the performance of the engine is marginally increased with the suspension of TiO2 nano particles whereas the reduction emissions are considerable.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Lyes Tarabet ◽  
Khaled Loubar ◽  
Mohand Said Lounici ◽  
Samir Hanchi ◽  
Mohand Tazerout

Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.


Author(s):  
K. R. Balasubramanian ◽  
R. Anand ◽  
B. Venkatesh ◽  
G. R. Kannan ◽  
S. P. Sivapirakasam

The world needs an alternative fuels that could maintain the world running on its wheels due to the increasing energy demand and uncertainty in availability of the fossil fuels. The present investigation analyzes the scope of utilizing the Deccan hemp oil based biodiesel derived from jute seed as an alternative to the diesel. Experimental investigation was carried out at diesel engine with different loads from 0% to 100% and 10% overload condition under a constant speed of 1500 rpm. It was found that the reduction in brake thermal efficiency and higher brake specific fuel consumption was observed with biodiesel in comparison with diesel. The carbon monoxide (CO), carbon-dioxide (CO2), unburnt hydrocarbon (HC) and nitric oxide (NO) emissions for Deccan hemp oil based biodiesel were reduced by 0.2% vol, 1.6% vol, 62.5%, 36.84% whereas slightly higher smoke emission was observed when compared to diesel fuel. These studies revealed that Deccan hemp oil based biodiesel can be used as a fuel in compression ignition engine without any engine modifications.


2015 ◽  
Vol 787 ◽  
pp. 687-691
Author(s):  
Tarigonda Hari Prasad ◽  
R. Meenakshi Reddy ◽  
P. Mallikarjuna Rao

Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promising sources of energy to mitigate both the serious problems of the society viz., depletion of fossil fuels and environmental pollution. In the present work, experiments are carried out on a Single cylinder diesel engine which is commonly used in agricultural sector. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG through inlet manifold. The engine is properly modified to operate under dual fuel operation using LPG through inlet manifold as fuel along FME as ignition source. The brake thermal efficiency of FME with LPG (2LPM) blend is increased at an average of 5% when compared to the pure diesel fuel. HC emissions of FME with LPG (2LPM) blend are reduced by about at an average of 21% when compared to the pure diesel fuel. CO emissions of FME with LPG (2LPM) blends are reduced at an average of 33.6% when compared to the pure diesel fuel. NOx emissions of FME with LPG (2LPM) blend are reduced at an average of 4.4% when compared to the pure diesel fuel. Smoke opacity of FME with LPG (2LPM) blend is reduced at an average of 10% when compared to the pure diesel fuel.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7903
Author(s):  
István Péter Kondor ◽  
Máté Zöldy ◽  
Dénes Mihály

Due to the world’s growing population, the size of areas intended for food production in many countries of the world can only be achieved through severe environmental damage and deforestation, which has many other detrimental consequences in addition to accelerating global warming. By replacing the bio-content of fuels with other alternative fuels, land that is used for energy crops can also be used to grow food, thus mitigating the damaging effects of deforestation. Waste-based tire pyrolysis oil (TPO) can be a promising solution to replace the bio-proportion of diesel fuel. Since it is made from waste tires, it is also an optimal solution for recycling waste. This research shows the effect of different low-volume-percent tire pyrolyzed oil blended with diesel on the performance, fuel consumption, and emissions on a Mitsubishi S4S-DT industrial diesel engine. Four different premixed ratios of TPO were investigated (2.5%, 5%, 7.5% and 10%) as well as pyrolysis oil and 100% diesel oil; however, the following studies will only include the data from the pure diesel and the 10% TPO measurements. The experimental investigations were in an AVL electric dynamometer, the soot measurements were in an AVL (Anstalt für Verbrennungskraftmaschinen List) Micro soot sensor (MSS), and the emission measurements were in a AVL Furier-transform infrared spectroscopy (FTIR) taken. The scope of research was to investigate the effect of low volume percentage TPO on performance and emissions on a light-duty diesel engine.


2020 ◽  
Vol 8 (5) ◽  
pp. 3950-3954

Alternative fuel sources are needed to be developed to meet the escalating demand for fossil fuels. Also from an environmental point of view, these most modern resources of fuels must be environment-friendly. The rapidly increasing consumption of fossil fuel and petroleum products has been a matter of concern for many countries which imports more crude oil. So, there is necessary for the development of new energy sources. The biomass, edible oil, inedible oils from plants and fish fat oil are imperatives and seen to be a potential substitute for diesel fuel. Acid and Base catalyzed transesterification is the most acceptable process for biodiesel production. In this project, an attempt towards finding the effect of alternate fuels as a substitute over diesel and reduce its consumption to lessen the environmental effects. Biodiesel has been extensively used in diesel engines as a partial substitute in the past few decades. The present investigation is carried out with blending up fish oil biodiesel with diesel in varying proportions to test out the emission and performance characteristics of direct injection single cylinder, four strokes, and air-cooled diesel engine. The fish oil biodiesel was produced by the transesterification process and obtained fish oil biodiesel blended with diesel fuel with various propagations of B20, B50, B75 & B100. These blended fuels were further investigated in a diesel engine with variable speeds such as 1000rpm, 1250rpm, 1500rpm, 1720rpm, 2000rpm 2250rpm & 2500rpm. In this comparative study, the effects of fish oil biodiesel fuel blends are compared and evaluated with pure diesel.


Author(s):  
Yongcheng Huang ◽  
Yaoting Li ◽  
Kun Luo ◽  
Jiyuan Wang

Although both biodiesel and n-butanol are excellent renewable biofuels, most of the existing research works merely use them as the additives for petroleum diesel. As the main fuel properties of biodiesel and n-butanol are complementary, the biodiesel/ n-butanol blends are promising to be a pure biomass-based substitute for diesel fuel. In this paper, the application of the biodiesel/ n-butanol blends on an agricultural diesel engine was comprehensively investigated, in terms of the combustion, performance, and emission characteristics. First, the biodiesel/ n-butanol blends with 10%, 20%, and 30% n-butanol by weight were prepared and noted as BBu10 (10 wt% n-butanol + 90 wt% biodiesel), BBu20 (20 wt% n-butanol + 80 wt% biodiesel), and BBu30 (30 wt% n-butanol + 70 wt% biodiesel). It was found that adding 30 wt% n-butanol to biodiesel can reduce the viscosity by 39.3% and increase the latent heat of vaporization by 57.3%. Then the engine test results showed that with the addition of n-butanol to biodiesel, the peak values of the cylinder pressure and temperature of the biodiesel/ n-butanol blends were slightly decreased, the peak values of the pressure rise rate and heat release rate of the blends were increased, the fuel ignition was delayed, and the combustion duration was shortened. BBu20 has the approximate ignition characteristics with diesel fuel. Both the brake thermal efficiency and the brake-specific fuel consumption of BBu30 were increased by the average percentages of 2.7% and 14.9%, while NO x, soot, and CO emissions of BBu30 were reduced by the average percentages of 17.6%, 34.1%, and 15.4%, compared to biodiesel. The above variations became more evident as the n-butanol proportion increased.


Energy ◽  
2012 ◽  
Vol 46 (1) ◽  
pp. 596-605 ◽  
Author(s):  
Pouya Mohammadi ◽  
Ali M. Nikbakht ◽  
Meisam Tabatabaei ◽  
Khalil Farhadi ◽  
Arash Mohebbi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document