Loading Height on Reinforced Brick Masonry Wall's Failure Mode and Seismic Performance with Finite Element Analysis Method

2013 ◽  
Vol 788 ◽  
pp. 546-549
Author(s):  
Zhi Heng Wu ◽  
Wen Fang Zhang

Loading height is a key factor that affects brick masonry wall specimens failure mode and seismic performance. To explore reinforced brick masonry walls failure pattern and seismic performance in different loading height, reinforced brick masonry wall MARC finite element model with 1.44 aspect ratio is set up to analyze its failure mode and seismic performance at constant vertical stress and different loading height. Results are as follows: bending failure happens more easily at higher loading height and shear failure happens more easily at lower loading height; wall specimen shows better deformation ability, elastic and plastic energy dissipation capacity but lower ultimate bearing capacity at higher loading height.

2012 ◽  
Vol 193-194 ◽  
pp. 1221-1225
Author(s):  
Jing Yang ◽  
Wen Fang Zhang

To research the seismic performance and failure mode of longitudinal independent brick masonry wall between or not between windows with setting central reinforced concrete constructional columns under the lateral function and vertical load, this paper used ABAQUS finite element analysis software to model the walls between or not between windows and be in stress analysis, obtaining the reaction force- displacement curve of loading location and the maximum horizontal displacement at the top of wall. Calculate and compare the shear strength and flexural capacity of walls. The results show that the brick masonry wall between windows with central constructional columns occurred shear failure, but the wall without windows occurred flexural failure. And compared with the wall between windows, the ductility increased, the shear capacity reduced and the seismic performance improved. Propose that can set up a isolated seam between the windowsill wall and longitudinal wall invented by Zhang Wenfang etc., and turn window wall to wall without windows to improve the seismic behavior of wall between windows.


2012 ◽  
Vol 193-194 ◽  
pp. 791-795
Author(s):  
Hui Hui Zhao ◽  
Wen Fang Zhang

The application of ABAQUS finite element software non-linear finite element analysis of brick masonry walls with structural column. Build three brick masonry wall models, and analysis of the damage form of the wall under different vertical compressive stress and horizontal force. Thus the analysis result compared with the calculation result of the relevant specification formula, in order to get validate compression influence of masonry aseismic walls. It turned out that different vertical compressive stress effect the shear capacity, and failure mode of brick masonry wall structure with a structural column.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1209-1212
Author(s):  
Wen Qi Niu ◽  
Wen Fang Zhang

Masonry structure, the number of large, wide area distribution, and earthquake damage survey, masonry structure severely damaged. In this paper, using the finite element tool ABAQUS, combined with an equivalent volume element simulation technology, the establishment of spatial finite element model to study the loading height of the brick wall failure modes and effects of seismic performance issues in depth analysis of its constant vertical pressure, different loading height seismic performance and failure modes under. The results show that: the greater the load height, the wall more prone to bending failure, otherwise prone to shear failure; loading height bigger, better ductility of the wall, the ultimate bearing capacity is smaller.


2020 ◽  
pp. 136943322096527
Author(s):  
Longji Dang ◽  
Rui Pang ◽  
Rui Liu ◽  
Hongmei Ni ◽  
Shuting Liang

This paper aims to investigate the seismic performance of hollow floor interior slab-column connection (HFISC). In this new connection system, several tube fillers are placed in slab to form hollow concrete. Moreover, locally solid zone, shear components, and hidden beam around the connections are installed to improve the bearing capacity and ductility of specimens. Three slab-column connections with different shear components were tested under cyclic loading and every specimen was constructed with parallel tube fillers in the north direction and orthogonal tube fillers in the south direction. The seismic behavior of specimens was evaluated according to the hysteretic response, skeleton curve, ductility, stiffness degradation, and energy dissipation. A finite element model was then developed and validated by a comparison with the experimental results. Based on experimental results and finite element analysis results, the relative effects of the hollow ratio of slab, the ratio of longitudinal reinforcement, the shear area of bent-up steel bars, and the arm length of welding section steel cross bridging were elucidated through parametric studies. This new slab-column connection showed better plastic deformation capacity while the bearing capacity was kept. Specimens with parallel tube fillers showed better seismic behavior than those of specimens with orthogonal tube fillers.


2011 ◽  
Vol 250-253 ◽  
pp. 278-282 ◽  
Author(s):  
Song Gu ◽  
Guo Ping Chen ◽  
Shui Wen Zhu

The purpose of this paper was to investigate the mechanical behavior and failure mode of recycled concrete brick masonry wall under cycling in-plane load. These models of masonry walls were constructed in the laboratory and experimented under in-plane cycling load. The masonry wall was made of recycled concrete bricks joined by mortar, with gypsum lining on both faces. A simulation based on the experiment was carried out using the finite element software ANSYS. In the proposed FE model, the recycling concrete bricks and joints were modeled separately, allowing for nonlinear deformation characteristics of the two materials. The results of the experiment and the finite element analysis were analyzed and compared. When the stress distributions were taken into consideration in the experiments and solutions of ANSYS, it was observed that the stress concentration occurred on two diagonals of the masonry wall. The destruction process and characteristics of the masonry wall were obtained by the experiments. The results of finite element method matched experimental results very well. The FE software ANSYS can be used in the analysis of recycling concrete brick masonry walls under in-plane cycling load and strength capacity.


2012 ◽  
Vol 204-208 ◽  
pp. 1109-1117
Author(s):  
Hui Peng ◽  
Shu Yu Yu ◽  
Chun Sheng Cai ◽  
Wei Wei Liu

The bonding behavior of CFRP-concrete interface has important influence on the mechanical behavior and the failure mode of the strengthened structure. In this paper, a total of 4 specimens strengthened with CFRP plate were prepared and the double-shear tests were conducted to investigate the mechanical behavior and the failure mode of the CFRP-concrete bonding. During the tests, the on the ultimate bearing capacity and the distribution of the CFRP strains were measured and the influence of bonding lengths and thickness of the epoxy were discussed. According to the test results, the distribution of the CFRP strain along the bonding length shows an exponential decreasing law, and the strain in the vicinity of the loading position was much greater than that at the ends. Based on the test data, the finite element model of the specimens was developed, by using the orthotropic spring elements to simulate the adhesive layer with ANSYS software. The comparison of the analytical results and the experimental results indicates that both results have shown a good agreement.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Anxin Guo ◽  
Huixing Gao

This paper investigates the seismic performance of posttensioned concrete piers with external viscoelastic dampers to improve the energy dissipation capacity of this type of structure. An installation scheme for viscoelastic dampers on bridge piers is proposed, and the mechanical models of the damper are analyzed according to the installation scheme. By attaching the viscoelastic dampers to the posttensioned bridge piers, the analytical model of the hybrid system is established using the OpenSees finite element analysis package. Cyclic behavior and time history analyses are conducted on a posttensioned bridge with and without viscoelastic dampers using the established finite element model. The analysis results indicate that the viscoelastic dampers can effectively improve the seismic performance of the bridge structures with posttensioned piers.


Author(s):  
Qiyi Zhang ◽  
Sheng Dong

Suction foundations are widely used in deep sea and their ultimate bearing capacity which is closely related with failure modes of suction anchor at limit equilibrium state is a key technology in offshore engineering practice. Based on Coulomb friction theory, an exact finite element model is presented in this paper. On the basis of this FEM model, by use of the finite element analysis software ABAQUS, the effect of mooring point and aspect ratio of a suction anchor on the ultimate bearing capacity and its stability are researched in detail. The results show that the ultimate bearing capacity and stability of the suction anchor are affected vastly by the position of mooring point, and the variation of mooring point on the suction anchor can lead to different failure modes. Simultaneously, the results also shows that tilted rotation of the soil along the direction of the mooring force will occur when the mooring point is near the top of the suction anchor, and the soil near the bottom of the fixed anchor rotates around the center of a circle, so the failure mode is called forward-tilted rotation in this paper; A general translation slip of the soil in front of the anchor along the direction of the mooring force will occur when mooring point is below midpoint of suction anchor, so the failure mode is called the translation slip failure mode in this paper. Anticlockwise tilted rotation of the soil along the direction of mooting force will occur when the mooring point is near the bottom of the anchor, and the soil at the top of the anchor rotates around the center of a circle, so the failure mode is called backward-tilted rotation in this paper.


Author(s):  
Yu Zhang ◽  
Qingwen Zhang ◽  
Jian Zhao ◽  
Guangchun Zhou

This paper focuses on husk mortar wallboard, which is a new type of energy-saving composite wallboard with new materials and complex working mechanism. There are eight total different dimensioned panels tested. Six of them are openings (window or door), with different opening rates; the other two are full panels with same dimensions. Based on the experimental data, they are analyzed under both horizontal and vertical direction loading, combined with the finite element analysis to reveal the working characteristics. The finite element model of husk mortar energy-saving wallboards is established by ANSYS software. Finally, the finite element results are compared with the experimental results from three aspects: ultimate load, failure mode and load displacement curve, which verifies the correctness of the finite element model.


Sign in / Sign up

Export Citation Format

Share Document