Loading Height on Reinforced Brick Masonry Wall’s Failure Mode and Seismic Performance with Finite Element Analysis Method

2014 ◽  
Vol 1008-1009 ◽  
pp. 1209-1212
Author(s):  
Wen Qi Niu ◽  
Wen Fang Zhang

Masonry structure, the number of large, wide area distribution, and earthquake damage survey, masonry structure severely damaged. In this paper, using the finite element tool ABAQUS, combined with an equivalent volume element simulation technology, the establishment of spatial finite element model to study the loading height of the brick wall failure modes and effects of seismic performance issues in depth analysis of its constant vertical pressure, different loading height seismic performance and failure modes under. The results show that: the greater the load height, the wall more prone to bending failure, otherwise prone to shear failure; loading height bigger, better ductility of the wall, the ultimate bearing capacity is smaller.

2013 ◽  
Vol 788 ◽  
pp. 546-549
Author(s):  
Zhi Heng Wu ◽  
Wen Fang Zhang

Loading height is a key factor that affects brick masonry wall specimens failure mode and seismic performance. To explore reinforced brick masonry walls failure pattern and seismic performance in different loading height, reinforced brick masonry wall MARC finite element model with 1.44 aspect ratio is set up to analyze its failure mode and seismic performance at constant vertical stress and different loading height. Results are as follows: bending failure happens more easily at higher loading height and shear failure happens more easily at lower loading height; wall specimen shows better deformation ability, elastic and plastic energy dissipation capacity but lower ultimate bearing capacity at higher loading height.


2020 ◽  
pp. 136943322096527
Author(s):  
Longji Dang ◽  
Rui Pang ◽  
Rui Liu ◽  
Hongmei Ni ◽  
Shuting Liang

This paper aims to investigate the seismic performance of hollow floor interior slab-column connection (HFISC). In this new connection system, several tube fillers are placed in slab to form hollow concrete. Moreover, locally solid zone, shear components, and hidden beam around the connections are installed to improve the bearing capacity and ductility of specimens. Three slab-column connections with different shear components were tested under cyclic loading and every specimen was constructed with parallel tube fillers in the north direction and orthogonal tube fillers in the south direction. The seismic behavior of specimens was evaluated according to the hysteretic response, skeleton curve, ductility, stiffness degradation, and energy dissipation. A finite element model was then developed and validated by a comparison with the experimental results. Based on experimental results and finite element analysis results, the relative effects of the hollow ratio of slab, the ratio of longitudinal reinforcement, the shear area of bent-up steel bars, and the arm length of welding section steel cross bridging were elucidated through parametric studies. This new slab-column connection showed better plastic deformation capacity while the bearing capacity was kept. Specimens with parallel tube fillers showed better seismic behavior than those of specimens with orthogonal tube fillers.


2011 ◽  
Vol 306-307 ◽  
pp. 733-737
Author(s):  
Xu Dan Dang ◽  
Xin Li Wang ◽  
Hong Song Zhang ◽  
Jun Xiao

In this article the finite element software was used to analyse the values for compressive strength of X-cor sandwich. During the analysis, the failure criteria and materials stiffness degradation rules of failure mechanisms were proposed. The failure processes and failure modes were also clarified. In the finite element model we used the distributions of failure elements to simulate the failure processes. Meanwhile the failure mechanisms of X-cor sandwich were explained. The finite element analysis indicates that the resin regions of Z-pin tips fail firstly and the Z-pins fail secondly. The dominant failure mode is the Z-pin elastic buckling and the propagation paths of failure elements are dispersive. Through contrast the finite element values and test results are consistent well and the error range is -7.6%~9.5%. Therefore the failure criteria and stiffness degradation rules are reasonable and the model can be used to predict the compressive strength of X-cor sandwich.


2015 ◽  
Vol 730 ◽  
pp. 81-84
Author(s):  
Huan Jin

Based on the quasi-static test of single-layer, two-bay RC frame model, using DIANA finite element program, a finite element Macro-model of masonry-infilled frame structure was established, and nonlinear finite element analysis of frame structures filled with different masonry materials was conducted. As a result of the existence of infill walls, the failure modes of frame structure have been changed, and which is easy to cause shear failure at the top of frame columns. If masonry materials of infill walls are different, the effects of infill panels on frame structures will be different. Comparative analysis shows that the influence of clay bricks is the largest, followed by autoclaved bricks’ influence, while aerated concrete blocks’ influence is the smallest. Therefore, to avoid the associated failure mechanism caused by infill walls, lightweight masonry materials are suggested to be used in actual engineering.


2012 ◽  
Vol 226-228 ◽  
pp. 1066-1071
Author(s):  
Kai Qin ◽  
Wen Fang Zhang ◽  
Li Jun Niu

Brick wall has large lateral sidesway stiffness and shear failure often occurs under horizontal earthquake effect, but the scourge surveys indicate that flexural failure can also occurs sometimes. Given that there are still few researches about masonry’s failure modes in China, Finite Element Models of non-reinforced brick masonry with different Depth-width Ratios and reinforced brick masonry whose Depth-width Ratio is 1.444 are established with the help of MSC.MARC to analyze its failure mode under horizontal action. The researching results indicate that: The larger the Depth-width Ratio of non-reinforced brick masonry is, the more flexural components it has and the better its ductility is; the smaller its Depth-width Ratio is, the larger the D-value of Bottom Shear and Ultimate Shear Bearing Capacity according to formulas from code before damage, and thereby the more easily the shear failure takes place; however, the ductility of brick wall’s flexural failure is improved evidently through making reasonable reinforcement schemes.


2014 ◽  
Vol 578-579 ◽  
pp. 699-702
Author(s):  
Min Zhang ◽  
Chuan Long Zou ◽  
Xiao Jian Fu

Mechanical testing on the first group of ordinary brick wall-beam and second group of recycled brickbat concrete wall-beam, measured its ultimate load and the maximum deflection, establishing finite element model to analyze, and comparing with the test results. It will be show that under the action of ultimate load, friction coefficient between the upper-wall of the wall-beam and joist can be desirable between 0.35 ~ 0.45, and the friction coefficient of recycled concrete wall-beam is bigger than ordinary wall-beam, and the higher the intensity of the upper-wall is, the bigger its friction coefficient is, as well as the greater stiffness of the wall-beam is.


Author(s):  
T. Y. Kam

The development of composite wind blades for a 5kW wind turbine blade is presented. During the design process, the distributions of the twisting angle and wind load along the long axis of the blade are determined in the aerodynamic analysis of the blade. A finite element model is constructed for the design and stress analysis of the wind blade made of glass-fabric composites. The failure modes such as the first-ply failure and buckling of the skin of the composite wind blade are identified in the finite element analysis of the blade. The wind blade parts were fabricated using the hand-layup and vacuum-bag molding technique. The blade was composed of two, namely, upper and lower, composite skins which were joined together via a composite shear web. The wind blade was tested to validate the suitability of the design.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Anxin Guo ◽  
Huixing Gao

This paper investigates the seismic performance of posttensioned concrete piers with external viscoelastic dampers to improve the energy dissipation capacity of this type of structure. An installation scheme for viscoelastic dampers on bridge piers is proposed, and the mechanical models of the damper are analyzed according to the installation scheme. By attaching the viscoelastic dampers to the posttensioned bridge piers, the analytical model of the hybrid system is established using the OpenSees finite element analysis package. Cyclic behavior and time history analyses are conducted on a posttensioned bridge with and without viscoelastic dampers using the established finite element model. The analysis results indicate that the viscoelastic dampers can effectively improve the seismic performance of the bridge structures with posttensioned piers.


Author(s):  
Qiyi Zhang ◽  
Sheng Dong

Suction foundations are widely used in deep sea and their ultimate bearing capacity which is closely related with failure modes of suction anchor at limit equilibrium state is a key technology in offshore engineering practice. Based on Coulomb friction theory, an exact finite element model is presented in this paper. On the basis of this FEM model, by use of the finite element analysis software ABAQUS, the effect of mooring point and aspect ratio of a suction anchor on the ultimate bearing capacity and its stability are researched in detail. The results show that the ultimate bearing capacity and stability of the suction anchor are affected vastly by the position of mooring point, and the variation of mooring point on the suction anchor can lead to different failure modes. Simultaneously, the results also shows that tilted rotation of the soil along the direction of the mooring force will occur when the mooring point is near the top of the suction anchor, and the soil near the bottom of the fixed anchor rotates around the center of a circle, so the failure mode is called forward-tilted rotation in this paper; A general translation slip of the soil in front of the anchor along the direction of the mooring force will occur when mooring point is below midpoint of suction anchor, so the failure mode is called the translation slip failure mode in this paper. Anticlockwise tilted rotation of the soil along the direction of mooting force will occur when the mooring point is near the bottom of the anchor, and the soil at the top of the anchor rotates around the center of a circle, so the failure mode is called backward-tilted rotation in this paper.


2013 ◽  
Vol 790 ◽  
pp. 247-251
Author(s):  
Li Ting Dong ◽  
Yan Wang

Based on node test and finite element analysis results of four different structural form enhanced nodes,failure modes,hysteretic behavior,bearing capacity,ductility and energy dissipation capacity of nodes are analyzed comprehensively and comparatively for more in-depth exploration about the seismic performance of symmetric enhanced nodes.The results showed that all the symmetric enhanced nodes have full hysteretic curve and energy dissipation capacity. On the whole,The flange-plate reinforced node exhibit better seismic performance.


Sign in / Sign up

Export Citation Format

Share Document