Preparation and Microstructure of Titania (TiO2) Nanotube Arrays by Anodization Method

2013 ◽  
Vol 802 ◽  
pp. 104-108 ◽  
Author(s):  
Buagun Samran ◽  
Pacharee Krongkitsiri ◽  
Saichol Pimmongkol ◽  
Sopon Budngam ◽  
Udom Tipparach

TiO2 nanotube arrays were successfully synthesized by the anodization method of Ti foils in electrolyte containing the mixtures of ethylene glycol (EG), ammonium fluoride (0.3 wt % NH4F) and deionized water (2 Vol % H2O). A constant dc power supply at 50 V was used anodization process with different anodizing times. The resultant samples were annealed at 450 °C for 2 h. TiO2 nanotube arrays were studied by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The prepared TiO2 NTs has diameter in 50-200 nm. The minimum of diameter TiO2 nanotube arrays was approximately 50 nm for 1 h of anodization process.

2017 ◽  
Vol 748 ◽  
pp. 155-159
Author(s):  
Somkuan Photharin ◽  
Udom Tipparach

We have synthesyzed TiO2 nanotubes by an anodization method. The cathode was titanium (Ti) sheets and anode was platinum (Pt). The electrolytes were mixtures of ethylene glycol (EG), ammonium fluoride (NH4F) and deionized water (DI water). The anodizing voltage was set to 50 V and the process was carried out for 2 h. The titanium foils were anodized at room temperature. Then Ag nanoparticles were loaded in TiO2 nanotube arrays by immersed in 50 ml solutions containing of AgNO3 (1.0, 1.5 and 2.0 mM) for 24 h. The morphology, structure, and optical properties of the prepared nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and and UV-vis spectroscopy (UV-vis) respectively. The structures of TiO2 nanotubes obtained from the nanotube arrays were crystallized by annealing at 450 °C for 2 h before immersed in solution and immersed in solution before crystallized by annealing are similar. When the concentration of silver nitrate (AgNO3) increases, the TiO2 nanotube arrays cracked and are not well arranged.


2015 ◽  
Vol 1105 ◽  
pp. 220-224 ◽  
Author(s):  
Rinnatha Vongwatthaporn ◽  
Narongsak Kodtharin ◽  
Udom Tipparach

Titania nanotubes (TiO2NTs) photoanodes were synthesized by anodization method. The electrolytes were the mixtures of ethylene glycol (EG), ammonium fluoride (0.3 wt % NH4F) and deionized water (2 Vol % H2O) with different concentrations of dopant Fe (NO3)3∙9H2O. A constant dc power supply at 50 V was used as anodic voltage. The samples were annealed at 450 °C for 2 hours. The resultant products were characterized by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) to determine their microstructure when TiO2NTs were doped with different amounts of Fe atoms. The diameters of TiO2NTs were about60-120 nm. The highest density of TiO2NTs was obtained when the nanotubes were doped with 0.01 M of Fe.


2017 ◽  
Vol 744 ◽  
pp. 453-457
Author(s):  
Somkuan Photharin ◽  
Udom Tipparach

We have synthesized titania nanotubes by an anodization method. The anodization was carried out in a two-electrode configuration bath with Ti sheet as the anode and the Pt as the counter electrode. In this experiment, one face of the Ti foils was exposed to the electrolyte during anodization. The electrolytes were mixtures of ethylene glycol (EG), ammonium fluoride (NH4F) and deionized water (DI water) that contained of Cu and Fe dopants of 0.5 mM. The anodizing voltage was set to 50 V and the anodization was performed at room temperature for 2 h. The nanotubes were crystallized by annealing at 450°C for 2 h. The morphology, structure, and optical properties of the prepared nanotubes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis spectroscopy (UV-vis) respectively. The results show that titania nanotubes are anatase phase and the nanotubes are arranged in highly ordered arrays.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2014 ◽  
Vol 1025-1026 ◽  
pp. 427-431
Author(s):  
Ping Gao ◽  
Wei Zhang ◽  
Wei Tian Wang

Orthorhombic HoMnO3 films were prepared epitaxially on Nb-doped SrTiO3 single crystal substrates by using pulsed laser deposition technique. The films showed perfectly a-axis crystallographic orientations. X-ray diffraction and atomic force microscopy were used to characterize the films. The complex dielectric properties were measured as functions of frequency (40 Hz~1 MHz) and temperature (80 K~300 K) with a signal amplitude of 50 mv. The respective dielectric relaxation peaks shifted to higher frequency as the measuring temperature increased, with the same development of real part of the complex permittivity. The cole-cole diagram was obtained according to the Debye model, and the effects of relaxation process were discussed.


2005 ◽  
Vol 106 ◽  
pp. 117-122 ◽  
Author(s):  
Izabela Szafraniak ◽  
Dietrich Hesse ◽  
Marin Alexe

Self-patterning presents an appealing alternative to lithography for the production of arrays of nanoscale ferroelectric capacitors for use in high density non-volatile memory devices. Recently a self-patterning method, based on the use of the instability of ultrathin films during hightemperature treatments, was used to fabricate nanosized ferroelectrics. This paper reports the use of the method for the preparation of PZT nanoislands on different single crystalline substrates - SrTiO3, MgO and LaAlO3. Moreover, a multi-step deposition procedure in order to control lateral the dimension of the crystals was introduced. The nanostructures obtained were studied by atomic force microscopy, scanning electron microscopy and X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document