Machined NURBS Surface Description Using On-Machine Probing Data

2013 ◽  
Vol 819 ◽  
pp. 33-37 ◽  
Author(s):  
Jin Tao Lai ◽  
Xin Hua Yao ◽  
Wen Li Yu ◽  
Jian Zhong Fu

The error distribution of a machined NURBS surface is complex to describe since the machined surface isnt that easy to obtain. A new method for machined NURBS surface description based on inspection database of on-machine probing is presented. The main idea is to approximate the machined surface using the inspection data and the basis functions of the nominal NURBS surface and to get the error distribution of the surface. A virtual part with a NURBS surface is presented and its error caused by the interaction of the machine-tool-workpiece is obtained using the FEA method at the inspection points. A machined NURBS surface is achieved and the error distribution of the surface is expressed. This method provides a new way in error compensation and it will improve the machining accuracy of a NURBS surface.


Author(s):  
Hongwei Liu ◽  
Rui Yang ◽  
Pingjiang Wang ◽  
Jihong Chen ◽  
Hua Xiang

The objective of this research is to develop a novel correction mechanism to reduce the fluctuation range of tools in numerical control (NC) machining. Error compensation is an effective method to improve the machining accuracy of a machine tool. If the difference between two adjacent compensation data is too large, the fluctuation range of the tool will increase, which will seriously affect the surface quality of the machined parts in mechanical machining. The methodology used in compensation data processing is a simplex method of linear programming. This method reduces the fluctuation range of the tool and optimizes the tool path. The important aspect of software error compensation is to modify the initial compensation data by using an iterative method, and then the corrected tool path data are converted into actual compensated NC codes by using a postprocessor, which is implemented on the compensation module to ensure a smooth running path of the tool. The generated, calibrated, and amended NC codes were immediately fed to the machine tool controller. This technique was verified by using repeated measurements. The results of the experiments demonstrate efficient compensation and significant improvement in the machining accuracy of the NC machine tool.



2005 ◽  
Vol 291-292 ◽  
pp. 513-518 ◽  
Author(s):  
Ming Jun Chen ◽  
Ying Chun Liang ◽  
Ya Zhou Sun ◽  
W.X. Guo ◽  
Wen Jun Zong

In order to machine complex free surface parts, a micro NC (numerical control) three-dimensional machine tool is developed, integrated the PMAC control. Based on this NC machine tool, the influencing of the technological and tool’s parameters on machining accuracy of micro complex surface parts are analyzed, and the cause to lead to the machining errors is explained. Therefore, the cutting parameters and tool geometry parameters to machine micro complex surface, such as the human’s face, can be selected optimally. Finally, the micro complex human’s face is machined on this developed micro machine tool under optimal parameters. The experimental results show that the machined surface is smooth and continuous. The machined quality is satisfied.



Author(s):  
Shih-Ming Wang ◽  
Han-Jen Yu ◽  
Yi-Hung Liu ◽  
Da-Fun Chen

Technology development trends towards the ability to manufacture ever smaller parts and feature sizes with increased precision and decreased cost. Micro machining is one of the important manufacturing methods to fulfill the requirements from the industry. The objective of this paper is to develop an on-machine error measurement system that can identify the micro machining errors for error compensation so that the machining accuracy of a meso-scale machine tool (mMT) can be enhanced. Because of the difficulty in handling and repositioning the miniature workpiece, the error measurement system should be non-contact and on-machine executable. To meet this requirement, a vision-based error measurement system integrating image re-constructive technology, camera pixel correction, and model comparison algorithm error was developed in this study. The proposed measurement system consists of a CCD with CCTV lens, a precision 3-DOF platform, image re-construction sub-system, and contour error calculation sub-system. By adopting Canny Edge Detection algorithm and camera pixel calibration method, the contour of a machined workpiece can be identified and compared to the pixel-based theoretical contour model of the workpiece to determine the micro machining errors. Because the system does not have to remove the machined workpiece from the CNC machine tool, errors due to re-installing and re-positioning can be avoided. To prove the feasibility of the developed algorithm and system, measurement results obtained from the vision-based measurement system were compared with the measurements of CMM, and error compensation experiment conducted on a 3-DOF mMT was also conducted. The results have shown the good feasibility and effectiveness of the developed system.



Author(s):  
Baobao Qi ◽  
Qiang Cheng ◽  
Zhifeng Liu ◽  
Dongyang Sun

Abstract Machine tools usually cut two or more surfaces after the work piece clamped on work table. In order to improve the machining accuracy and optimize accuracy design, it is hoped that the geometric errors that influence the accuracy of machined surface prominently can be known beforehand, so the adjustment will be carried out with a definite objective rather than without any clue. Because the machining accuracy of each direction in 3-D space is different value, in this paper, machining accuracy failure mode was defined as the various combination of the machining accuracy of each direction according to whether it is up to the reserved objective value or not. A three-axis machine tool was selected as an example and there were 7 machining accuracy failure modes for it. Based on the generalized correlation analysis, the correlation relationships between 7 machining accuracy failure modes were analyzed, and the main failure modes that affect the machining accuracy of work piece to be machined were identified. For each machining accuracy failure mode, key geometric error that had major influence on it was identified based on sensitivity analysis. Finally, four stepped work pieces were milled by a 3-axis machine tool to illustrate the analytical method proposed in this study.



Author(s):  
Guoda Chen ◽  
Yazhou Sun ◽  
Chenhui An ◽  
Feihu Zhang ◽  
Zhiji Sun ◽  
...  

The ultra-precision spindle is the key component of ultra-precision machine tool, which largely influences the machining accuracy. Its frequency characteristics mainly affect the frequency domain error of the machined surface. In this article, the error measurement setup for the ultra-precision aerostatic spindle in a flycutting machine tool is established. The dynamic and multi-direction errors of the spindle are real-time measured under different rotation speeds. Then, frequency domain analysis is carried out to obtain its regularity characteristics based on the measurement result. Through the analysis, the main synchronous and asynchronous errors with relatively large amplitude of the spindle errors are found, and the amplitude change law of these main spindle errors is obtained. Besides, the cause of the main synchronous and asynchronous errors is also analyzed and indicated. This study deepens the understanding of ultra-precision spindle dynamic characteristics and plays the important role in the spindle frequency domain errors’ control, machining process planning, frequency characteristics analysis and oriented control of the machined surface errors.



2021 ◽  
Author(s):  
Gaiyun He ◽  
Chenglin Yao ◽  
Yicun Sang ◽  
Yichen Yan

Abstract Five-axis flank milling is widely used in the aerospace and automotive industry. However, diverse sources of errors prevent the improvement of machining accuracy. This paper proposes a novel error compensation method for five-axis flank milling of ruled surface by modifying the original tool path according to the error distribution model. The method contains three steps: First, the errors at the middle of the straight generatrix on the machined surface are calculated according to error distribution, and the corresponding normal vectors are obtained by geometric calculation. Second, multi-peaks Gaussian fitting method is utilized to make connections between parameters in the original tool path and error distribution. Finally, the new tool path is generated by adjusting original tool path. Machining experiments are performed to test the effectiveness of the proposed error compensation method. The error distribution after compensation shows that the average error decreases 74%, and the maximum error (contains overcutting and undercutting) decreases 26%. Results show that the proposed error compensation method is effective to improve the accuracy for five-axis flank milling.



2014 ◽  
Vol 513-517 ◽  
pp. 4202-4205
Author(s):  
Hong Xin Zhang ◽  
Qian Jian Guo

With the increasing requirements of the machining accuracy of CNC machine tools, the impact of thermal deformation is growing. Thermal error compensation technology can predict and compensate the thermal errors in real-time, and improve the machining accuracy of the machine tool. In this paper, the research objects of thermal error compensation is expanded to the volumetric error of the machine tool, the volumetric error modeling of a three-axis machine tool is fulfilled and a compensator is developed for the compensation experiment, which provides scientific basis for the improvement of the machining accuracy.



2021 ◽  
Vol 15 (2) ◽  
pp. 215-223
Author(s):  
Akio Hayashi ◽  
Hiroto Tanaka ◽  
Masato Ueki ◽  
Hidetaka Yamaoka ◽  
Nobuaki Fujiki ◽  
...  

Robot-type machine tools are characterized by the ability to change the tool posture and machine itself with a wider motion range than conventional machine tools. The motion of the robot machine tool is realized by simultaneous multi-axis control of link mechanisms. However, when the robot machine tool performs a general milling process, some problems that affect the machining accuracy occur. Moreover, it is difficult to identify the motion errors of each axis, which influence machining accuracy. Thus, it is difficult to adjust the servo gain and alignment error. In addition, the machining performance is unidentified because of the rigidity differences when the posture changes. In this study, the focus was on robot-type machine tools consisting of a serial and a parallel link mechanism. A geometric model is described, and the forward kinematics model is derived based on the geometric model. Machining tests were then carried out to evaluate the machining accuracy by measuring the machined surfaces and the simulated motion of the tool posture based on the proposed forward kinematics model to identify the mechanism that affects the machined surface roughness and surface waviness. As a result, it was shown that the proposed model can separate and reproduce the behavior of each axis of the machine. Finally, it was clarified that the behavior of the second axis has a great influence on the tool posture and machined surface.



2013 ◽  
Vol 284-287 ◽  
pp. 1723-1728
Author(s):  
Shih Ming Wang ◽  
Han Jen Yu ◽  
Hung Wei Liao

Error compensation is an effective and inexpensive way that can further enhance the machining accuracy of a multi-axis machine tool. The volumetric error measurement method is an essential of the error compensation method. The measurement of volumetric errors of a 5-axis machine tool is very difficult to be conducted due to its complexity. In this study, a volumetric-error measurement method using telescoping ball-bar was developed for the three major types of 5-axis machines. With the use of the three derived error models and the two-step measurement procedures, the method can quickly determine the volumetric errors of the three types of 5-axis machine tools. Comparing to the measurement methods currently used in industry, the proposed method provides the advantages of low cost, easy setup, and high efficiency.



2012 ◽  
Vol 170-173 ◽  
pp. 3487-3490
Author(s):  
Qian Jian Guo ◽  
Qing Wen Qu ◽  
Jian Guo Yang

Volumetric errors are the major contributor to the dimensional errors of a workpiece in precision machining. Error compensation technique is a cost-effective way to reduce volumetric errors. Accurate modeling of volumetric errors is a prerequisite of error compensation. In this paper, a volumetric error model was proposed by using neural networks based on ant colony algorithm. Finally, a volumetric error compensation system was developed based on the proposed model, and which has been applied to a CNC machine tool in daily production. The results show that the volumetric errors are reduced and the machining accuracy of the machine tool is improved.



Sign in / Sign up

Export Citation Format

Share Document