The Performance Test and Analysis of Sorona Elastic Swimsuit Fabric

2013 ◽  
Vol 821-822 ◽  
pp. 415-418
Author(s):  
Yu Xiu Yan ◽  
Ling He ◽  
Shan Shan Lei ◽  
Ya Ping Lu ◽  
Yan Na Feng ◽  
...  

The common swimsuit fabrics on the market are mainly polyamide/ spandex, polyester/ spandex blended at present, which have some defects such as easy deformation, short service life etc. Sorona is a new kind of biomass fiber with low carbon and environmental protection, which has more superior performances than spandex that could ensure the fabric elastic lasting and stable. The paper uses seamless technology to weave new polyamide/ Sorona/ spandex swimsuit fabric, and compare with the ordinary polyamide/ spandex, polyester/ spandex fabric, by testing the specimen of tensile elasticity, elastic recovery and plasticity deformation rate, burst strength, and many other swimsuit related performance metrics. Come to conclusions: polyamide/ Sorona/ spandex fabric with superior elasticity, good comprehensive performance of elastic recovery and plastic deformation rate, excellent burst resistant performance , small hygroscopicity and fine permeability is suitable for swimsuit fabrics, providing reference for the development of high comfort seamless swimwear fabric.

1994 ◽  
Vol 22 (4) ◽  
pp. 261-278 ◽  
Author(s):  
C. Schuman ◽  
C. Esling ◽  
M. J. Philippe ◽  
M. Hergesheimer ◽  
M. Jallon ◽  
...  

This study deals with the texture evolution during drawing of interstitial-free low carbon steels under different conditions to study the possible influence of the drawing direction, deformation rate and metal/die friction coefficient. The drawing has been carried out without intermediary annealing, with constant die angle and deformation rate per pass. In all cases, a 〈110〉 fibre texture has been observed at the early stage of deformation (a few percents). The drawing direction, whether alternate or unidirectional, has little effect on texture. Slight differences only in the intensity of peaks on pole figures (PFs) are noted. Alternate drawing leads to higher drawing limits. The grain size affects both the texture and the mechanical properties, which are improved by fine grains. For industrial drawing, i.e. at a high deformation rate, no texture gradient has been clearly observed. Nevertheless, slight differences have been noted in the PF intensities, with generally a slightly sharper texture in the core, compared to the surface. The microhardness tests show no hardness gradient. In slow drawing (low deformation rate), there is a weak texture gradient which disappears at larger deformation. In order to visualize the influence of the metal/die friction, we used a material covered with copper. Results show that at a given reduction rate, the material covered with copper shows peak intensities on the (110) PF which are half these of a material drawn under conventional conditions. The drawing textures of BCC materials always present a 〈110〉 fibre texture. A modeling of the texture evolution during drawing has also been carried out using the Taylor model.


2018 ◽  
Vol 8 (12) ◽  
pp. 2421 ◽  
Author(s):  
Chongya Song ◽  
Alexander Pons ◽  
Kang Yen

In the field of network intrusion, malware usually evades anomaly detection by disguising malicious behavior as legitimate access. Therefore, detecting these attacks from network traffic has become a challenge in this an adversarial setting. In this paper, an enhanced Hidden Markov Model, called the Anti-Adversarial Hidden Markov Model (AA-HMM), is proposed to effectively detect evasion pattern, using the Dynamic Window and Threshold techniques to achieve adaptive, anti-adversarial, and online-learning abilities. In addition, a concept called Pattern Entropy is defined and acts as the foundation of AA-HMM. We evaluate the effectiveness of our approach employing two well-known benchmark data sets, NSL-KDD and CTU-13, in terms of the common performance metrics and the algorithm’s adaptation and anti-adversary abilities.


Author(s):  
Alex Ng ◽  
Shiping Chen

Performance testing is one of the vital activities spanning the whole life cycle of software engineering. As a result, there are a considerable number of performance testing products and open source tools available. It has been observed that most of the existing performance testing products and tools are either too expensive and complicated for small projects, or too specific and simple for diverse performance tests. In this chapter, we will present an overview of existing performance test products/tools, provide a summary of some of the contemporary system performance testing frameworks, and capture the key requirements for a general-purpose performance testing framework. Based on our previous works, we propose a system performance testing framework which is suitable for both simple and small, as well as complicated and large-scale performance testing projects. The core of our framework contains an abstraction to facilitate performance testing by separating the application logic from the common performance testing functionality, and a set of general-purpose data model.


2013 ◽  
Vol 401-403 ◽  
pp. 1239-1242
Author(s):  
Ting Li ◽  
Lu Wang ◽  
Rui Zhao

Because of the gun comprehensive performance detection means backward, and unable to meet the maintenance and support needs, we analysis on the artillery and comprehensive index. The detection system for the breechblock and anti-recoil mechanism and aimed machine is designed. Using advanced hydraulic control technology, realize the technical indicators detection under recoil process. The performance status before repair and repair quality are completely grasped. Its proved in the application this system runs stably and reliably.


Author(s):  
Brandt J. Ruszkiewicz ◽  
Tyler Grimm ◽  
Ihab Ragai ◽  
Laine Mears ◽  
John T. Roth

Increasingly strict fuel efficiency standards have driven the aerospace and automotive industries to improve the fuel economy of their fleets. A key method for feasibly improving the fuel economy is by decreasing the weight, which requires the introduction of materials with high strength to weight ratios into airplane and vehicle designs. Many of these materials are not as formable or machinable as conventional low carbon steels, making production difficult when using traditional forming and machining strategies and capital. Electrical augmentation offers a potential solution to this dilemma through enhancing process capabilities and allowing for continued use of existing equipment. The use of electricity to aid in deformation of metallic materials is termed as electrically assisted manufacturing (EAM). The direct effect of electricity on the deformation of metallic materials is termed as electroplastic effect. This paper presents a summary of the current state-of-the-art in using electric current to augment existing manufacturing processes for processing of higher-strength materials. Advantages of this process include flow stress and forming force reduction, increased formability, decreased elastic recovery, fracture mode transformation from brittle to ductile, decreased overall process energy, and decreased cutting forces in machining. There is currently a lack of agreement as to the underlying mechanisms of the electroplastic effect. Therefore, this paper presents the four main existing theories and the experimental understanding of these theories, along with modeling approaches for understanding and predicting the electroplastic effect.


Sign in / Sign up

Export Citation Format

Share Document