Research on the Seismic of a Large Span Roof

2013 ◽  
Vol 838-841 ◽  
pp. 424-427
Author(s):  
Hong Wei Gao ◽  
Yong Yao ◽  
Yun Peng Chu ◽  
Dai Guo Chen

By calculating a large span roof structures, get the intrinsic mode and real-time response of the structural under earthquake. The results showed that, the vertical acceleration response of structure is smaller than the horizontal acceleration response under EL-Centro wave and Tangshan wave. The vertical acceleration response is greater than the horizontal acceleration response under Lanzhou wave. The vertical displacement response of structure is greater than the horizontal displacement response under earthquake. Roof Destructed before the steel skeleton damage.

2010 ◽  
Vol 163-167 ◽  
pp. 3904-3909
Author(s):  
Wei Zhang ◽  
Min Wei Zhu ◽  
Tao Tao Shan

In this paper, three typical bedrock long-period seismic waves and two commonly used waves were selected for three dimensional seismic responses parallel computation of a valley topography site under uniform excitation and traveling wave excitation. The equivalent-linear analysis method was used in simulation of soil’s non-linear properties. Computation results showed that horizontal acceleration response increase and vertical acceleration response decrease under long-period seismic wave excitation compared with those under commonly used waves excitation. When considering wave traveling effect, the horizontal acceleration response decrease and the vertical acceleration response increase. The conclusions are useful for relevant engineering projects. Parallel computation was also performed to raise computational efficiency.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4602
Author(s):  
Xiuyun Zhu ◽  
Jianbo Li ◽  
Gao Lin ◽  
Rong Pan

This paper aimed at evaluating the influence of different vertical equivalent damping ratios of a 3-dimensional combined isolation bearing (3D-CIB) as regards seismic response and isolation effectiveness. A comparative study of the seismic response in terms of acceleration floor response spectra (FRS), peak acceleration, displacement response of the nuclear reactor building, and dynamic response of the 3D-CIB was carried out. The results showed that: (1) the horizontal FRS is slightly influenced by the vertical equivalent damping ratio of 3D-CIB, whereas the increase of the vertical equivalent damping ratio has a significant effect on reducing the vertical FRS; (2) the peak vertical acceleration increased with the decrease in the vertical equivalent damping ratios of 3D-CIB and the difference of peak accelerations calculated by the damping ratio of 20 and 25% is within 10%; (3) the increase of the vertical equivalent damping ratio is capable of reducing the horizontal displacement and the rocking effect of the superstructure, and effectively controlling the vertical displacement amplitude; and (4) the vertical equivalent damping ratio of 3D-CIB has a slight effect on its axial force. Consequently, it is demonstrated that the increase of the vertical equivalent damping ratio is advantageous for isolation effectiveness. From the view of displacement control, it is suggested that the 3D-CIB with the vertical an equivalent damping ratio of 15~20% is appropriate and acceptable.


2012 ◽  
Vol 9 (74) ◽  
pp. 2268-2278 ◽  
Author(s):  
Philip J. Gerrish ◽  
Paul D. Sniegowski

A metaphor for adaptation that informs much evolutionary thinking today is that of mountain climbing, where horizontal displacement represents change in genotype, and vertical displacement represents change in fitness. If it were known a priori what the ‘fitness landscape’ looked like, that is, how the myriad possible genotypes mapped onto fitness, then the possible paths up the fitness mountain could each be assigned a probability, thus providing a dynamical theory with long-term predictive power. Such detailed genotype–fitness data, however, are rarely available and are subject to change with each change in the organism or in the environment. Here, we take a very different approach that depends only on fitness or phenotype–fitness data obtained in real time and requires no a priori information about the fitness landscape. Our general statistical model of adaptive evolution builds on classical theory and gives reasonable predictions of fitness and phenotype evolution many generations into the future.


2010 ◽  
Vol 17 (4) ◽  
pp. 207-219 ◽  
Author(s):  
C.-C. Huang ◽  
J.-C. Horng ◽  
W.-J. Chang ◽  
S.-Y. Chueh ◽  
J.-S. Chiou ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Toshifumi Nogawa ◽  
Masayasu Saito ◽  
Naomichi Murashima ◽  
Yoshiyuki Takayama ◽  
Atsuro Yokoyama

Abstract Background Implant-supported removable partial dentures (ISRPDs) are an effective treatment for partially edentulous patients. ISRPDs improve patients’ satisfaction and oral function to a greater extent than RPDs by improving denture stability and enhancing support. However, the effect of a type of direct retainer on displacement of the abutment teeth and dentures in ISRPDs remains unclear. Therefore, we made a resin mandibular model of unilateral mandibular distal-extension partial edentulism for mechanical simulation and compared the dynamic behavior of the abutment teeth and the denture base among different tooth-borne retainers with various rigidities for RPDs and ISRPDs. Methods A resin mandibular model for mechanical simulation that had unilateral mandibular distal-extension edentulism and was missing the first molar, second molar, first premolar, and second premolar, and a denture fabricated from the patient’s computed tomography images were used. Three types of direct retainers with different connecting rigidities were evaluated. The vertical displacement of the denture base and buccal and lingual sides and the mesial displacement of the abutment teeth were measured. Results Regardless of the rigidity of the direct retainers and loading positions, the displacement of the denture bases in the ISRPDs was significantly smaller than that in the RPDs (P < 0.001). There was no significant difference in vertical displacement of the denture bases among direct retainers with various connecting rigidities in the ISRPDs. Conversely, horizontal displacement of the abutment teeth in both the RPDs and ISRPDs tended to be larger with the cone crown telescope, which has high rigidity, than with the cast cingulum rest and wire clasp, which have much lower rigidities. Conclusion Our results suggested that cast cingulum rest and wire clasps as direct retainers are appropriate ISRPDs to minimize denture movement and suppress displacement of the remaining teeth in patients with unilateral mandibular distal-extension partial edentulism.


2014 ◽  
Vol 945-949 ◽  
pp. 591-595 ◽  
Author(s):  
Meng Chen ◽  
Yan Yun Luo ◽  
Bin Zhang

Finite element model of track in frog zone is built by vehicle-turnout system dynamics. Considering variation of rail section and elastic support, bending deformation of turnout sleeper, spacer block and sharing pad effects, the track integral rigidity distribution in longitudinal direction is calculated in the model. Vehicle-turnout rigid-flexible coupling model is built by finite element method (FEM), multi-body system (MBS) dynamics and Hertz contact theory. With the regularity solution that different stiffness is applied for rubber pad under sharing pad of different turnout sleeper zone, analysis the variation of vertical acceleration of bogie and wheelset, rail vertical displacement and wheel-rail interaction force, this paper proves that setting reasonable rubber pad stiffness is an efficient method to solve rigidity irregularity problem.


2007 ◽  
Vol 347 ◽  
pp. 121-126 ◽  
Author(s):  
U. Galvanetto ◽  
L. Monopoli ◽  
Cecilia Surace ◽  
Alessandra Tassotti

The paper presents an experimental application of the Proper Orthogonal Decomposition (POD) to damage detection in steel beams. A damaged beam has been excited with a sinusoidal force, the acceleration response at points regularly spaced along the structure has been recorded and the relevant Proper Orthogonal Modes calculated. In this way it is possible to locate damage by comparing the measured dominant Proper Orthogonal Mode with a smoothed version of it which does not exhibit apparent peaks in correspondence with the damage. One of the principal advantages of the proposed damage detection technique is that it does not require vibration measurements to be performed on the undamaged structure. Moreover the ‘optimality’ of the proper orthogonal modes only requires the use of a few (one-two) of them which can be computed in real time during lab experiments or while the structure is functioning in the field.


Sign in / Sign up

Export Citation Format

Share Document