Analysis of Contamination Soil with Cu from Road Side by Using Laser Ablation Technique

2013 ◽  
Vol 845 ◽  
pp. 441-445 ◽  
Author(s):  
Mustafa Arab ◽  
Noriah Bidin

In this project, laser induced breakdown spectroscopy (LIBS) has been utilized to determine the heavy element (Copper) in soil sample. LIBS was used in this work to measure the detection limit of Cu in soil sample, on the basis of spectral features, many parameters to improve the sensitivity of LIBS detection of copper are proposed. Q-switch Nd:YAG laser pulse was carried out at 90 mJ and wavelength of 1064 nm to excite the soil samples in purpose of produce a fluorescence emission (plasma), which were analyzed via spectrum analyzer. The important experimental conditions such as the energy of laser source, integration time, the distance and angle of optical fiber from the sparks were optimized for obtain a best LIBS signal. Calibration curve of the Cu peak found to be 236.81 nm as the best peak to calculate the limit of detection (LOD) and found in this study about 2 ppm. From the results the concentrations of Cu is realized to be lower than the allowance limits of 1500 ppm according to the United States Environmental Protection Agency USEPA.

2012 ◽  
Vol 21 (7) ◽  
pp. 074204 ◽  
Author(s):  
Nakimana Agnes ◽  
Zuo-Qiang Hao ◽  
Jia Liu ◽  
Hai-Yan Tao ◽  
Xun Gao ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2930 ◽  
Author(s):  
Tingting Shen ◽  
Wenwen Kong ◽  
Fei Liu ◽  
Zhenghui Chen ◽  
Jingdong Yao ◽  
...  

Quick access to cadmium (Cd) contamination in lettuce is important to supervise the leafy vegetable growth environment and market. This study aims to apply laser-induced breakdown spectroscopy (LIBS) technology for fast determination of Cd content and diagnosis of the Cd contamination degree in lettuce. Emission lines Cd II 214.44 nm, Cd II 226.50 nm, and Cd I 228.80 nm were selected to establish the univariate analysis model. Multivariate analysis including partial least squares (PLS) regression, was used to establish Cd content calibration models, and PLS model based on 22 variables selected by genetic algorithm (GA) obtained the best performance with correlation coefficient in the prediction set Rp2 = 0.9716, limit of detection (LOD) = 1.7 mg/kg. K-Nearest Neighbors (KNN) and random forest (RF) were used to analyze Cd contamination degree, and RF model obtained the correct classification rate of 100% in prediction set. The preliminary results indicate LIBS coupled with chemometrics could be used as a fast, efficient and low-cost method to assess Cd contamination in the vegetable industry.


Atoms ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 84 ◽  
Author(s):  
Ashwin P. Rao ◽  
Matthew T. Cook ◽  
Howard L. Hall ◽  
Michael B. Shattan

A hand-held laser-induced breakdown spectroscopy device was used to acquire spectral emission data from laser-induced plasmas created on the surface of cerium-gallium alloy samples with Ga concentrations ranging from 0–3 weight percent. Ionic and neutral emission lines of the two constituent elements were then extracted and used to generate calibration curves relating the emission line intensity ratios to the gallium concentration of the alloy. The Ga I 287.4-nm emission line was determined to be superior for the purposes of Ga detection and concentration determination. A limit of detection below 0.25% was achieved using a multivariate regression model of the Ga I 287.4-nm line ratio versus two separate Ce II emission lines. This LOD is considered a conservative estimation of the technique’s capability given the type of the calibration samples available and the low power (5 mJ per 1-ns pulse) and resolving power ( λ / Δ λ = 4000) of this hand-held device. Nonetheless, the utility of the technique is demonstrated via a detailed mapping analysis of the surface Ga distribution of a Ce-Ga sample, which reveals significant heterogeneity resulting from the sample production process.


2019 ◽  
Vol 74 (1) ◽  
pp. 42-54 ◽  
Author(s):  
Daniel Diaz ◽  
Alejandro Molina ◽  
David W. Hahn

Laser-induced breakdown spectroscopy (LIBS) and principal component analysis (PCA) were applied to the classification of LIBS spectra from gold ores prepared as pressed pellets from pulverized bulk samples. For each sample, 5000 single-shot LIBS spectra were obtained. Although the gold concentrations in the samples were as high as 7.7 µg/g, Au emission lines were not observed in most single-shot LIBS spectra, rendering the application of the usual ensemble-averaging approach for spectral processing to be infeasible. Instead, a PCA approach was utilized to analyze the collection of single-shot LIBS spectra. Two spectral ranges of 21 nm and 0.15 nm wide were considered, and LIBS variables (i.e., wavelengths) reduced to no more than three principal components. Single-shot spectra containing Au emission lines (positive spectra) were discriminated by PCA from those without the spectral feature (negative spectra) in a spectral range of less than 1 nm wide around the Au(I) 267.59 nm emission line. Assuming a discrete gold distribution at very low concentration, LIBS sampling of gold particles seemed unlikely; therefore, positive spectra were considered as data outliers. Detection of data outliers was possible using two PCA statistical parameters, i.e., sample residual and Mahalanobis distance. Results from such a classification were compared with a standard database created with positive spectra identified with a filtering algorithm that rejected spectra with an Au intensity below the smallest detectable analytical LIBS signal (i.e., below the LIBS limit of detection). The PCA approach successfully identified 100% of the data outliers when compared with the standard database. False identifications in the multivariate approach were attributed to variations in shot-to-shot intensity and the presence of interfering emission lines.


2015 ◽  
Vol 54 (14) ◽  
pp. 4453 ◽  
Author(s):  
F. C. Alvira ◽  
T. Flores Reyes ◽  
L. Ponce Cabrera ◽  
L. Moreira Osorio ◽  
Z. Perez Baez ◽  
...  

1995 ◽  
Vol 16 (2) ◽  
pp. 75-82 ◽  
Author(s):  
B. Bescós ◽  
J. Castaño ◽  
A. González Ureña

This paper reports on the simultaneous detection of Mg, Mn, Fe and Pb in Al samples using laser-induced breakdown spectroscopy and optical multichannel analysis of the photoablated microplasma. Using calibrated samples, well characterized linear working curves were determined for these minor components over the 0.01–1% concentration range. In addition optimum experimental conditions were found that allow the analysis to be carded out in a fast and non-invasive manner. The potential application of the method to on-line industrial analysis is also suggested.


2005 ◽  
Vol 59 (2) ◽  
pp. 252-257 ◽  
Author(s):  
Christopher R. Dockery ◽  
Jack E. Pender ◽  
Scott R. Goode

A new method for the speciation of ng/mL concentrations of Cr(III) and Cr(VI) solutions with analysis by laser-induced breakdown spectroscopy (LIBS) is reported. Speciation is achieved by pre-concentration of the chromium onto commercially available cation exchange polymer membranes. Chromium(III) is removed directly by cation exchange; chromium(VI) in the filtrate is reduced to Cr(III) and concentrated onto a second cation exchange membrane, affording independent measurement of both species. Large volumes of waters containing Cr(III) and Cr(VI) can be concentrated onto the membranes and directly analyzed by laser-induced breakdown spectroscopy. The estimated limit of detection corresponds to 500 ng of Cr on the membrane: if a solution volume of 1 L is used, then the detection limit corresponds to a solution concentration of 0.5 ng/mL. Excellent separation of the chromium species is attained. Results show that overall method efficiencies range from 94–116% and are independent of the matrix. The influence of pH has been measured, and although Cr(VI) converts to Cr(III) in acidic solutions, the total Cr recoveries are not appreciably influenced by pH over the range of natural waters (4 to 9). In addition, speciation was performed in the presence of a number of different cations and showed that the method is robust in many different and complex matrices.


2008 ◽  
Vol 587-588 ◽  
pp. 657-661 ◽  
Author(s):  
Ana J. López ◽  
Mari Paz Mateo ◽  
Ana Santaclara ◽  
Armando Yáñez

This study deals with the analysis and characterization of wood polychromes by means of Laser-Induced Breakdown Spectroscopy (LIBS). Specimens from a Baroque altarpiece have been analyzed by using a Q-switched Nd:YAG laser source at the wavelength of 355 nm. Previously, a library of characteristic LIBS spectra of the most commonly used pigments and other materials involved was obtained. The knowledge of these spectra allowed us to identify the main constituents of the different layers in polychromes and to obtain compositional depth profiles.


Sign in / Sign up

Export Citation Format

Share Document