The Residual Stress after High Frequency Induction Welding with Complex Shapes WC-Co Alloy and Steel

2014 ◽  
Vol 852 ◽  
pp. 168-172 ◽  
Author(s):  
Jia Ju ◽  
Feng Xue ◽  
Jian Zhou ◽  
Jing Bai

Residual stresses were investigation by Three-D finite element simulation and experimental method. The Three-D finite element simulation confirms large residual stress appears in seam zone because of the crack part and the maximum loading parts were not coinciding. The heating/cooling rate can seriously affect the residual stress. Along with the heating rate decrease, the residual stress reduces in material and had big drop in high heating rate range than lower range. And cooling rate influence the residual stress in cemented carbide was more sensitive than in steel. Meanwhile, far away the seam, the residual stress decrease and became stable. After heat treatment, the residual stress reduced from more than 800MPa, 300MPa to less 100MPa, 52Mpa in WC-Co side and steel side respectively and the material had better abrasion resistance and high strength.

2021 ◽  
Vol 1032 ◽  
pp. 172-177
Author(s):  
Xiao Da Li ◽  
Xiang Hui Zhan

The finite element simulation technology can provide strong support for the optimization of processing technology and the treatment of detailed problems in the processing process. Two finite element methods applied to hot forming of high-strength steel plates are introduced, namely the incremental method and the deformation method. Two methods are used for simulation calculations. The finite element simulation based on incremental theory has high accuracy and requires more complete mold and process information. It is mainly used in the middle and late stages of product and mold design. And the finite element simulation based on deformation theory have fast calculation speeds and are mainly used in the early stages of product and mold design. Both types of methods have high practical value.


2015 ◽  
Vol 1134 ◽  
pp. 154-159
Author(s):  
Muhamad Sani Buang ◽  
Shahrul Azam Abdullah ◽  
Juri Saedon ◽  
Yupiter H.P. Manurung ◽  
Mohd Shahir Mohd Hairuni ◽  
...  

Springback is the phenomenon in which the material strip unbends itself after forming process. It is caused by the geometrical, mechanical properties or other process parameters. This paper focused on finite element simulation investigation on effects of geometrical parameters on the springback amount of the High Strength Steel (HSS). Two geometrical parameters, punch radius (Rp) and die opening (Wo) were selected and their effect on springback studied. Finite element simulation of U-bending test was performed using Simufact.formingTM with material database (MatILDa) and the level of the springback was measured. The result of the simulation shows that different values of punch radius (Rp) and die opening (Wo) are significant to the springback effect. 3 variable values of (Rp) and (Wo) selected in this studied are (2mm, 4mm, 6mm) and (30mm, 36mm, 48mm) respectively. The findings of the simulation could be used to accurately and reliably predict springback behavior of the tested material. The value of the springback increases, as the value of the die opening (Wo) increases. Meanwhile, the increasing value of the punch radius (Rp) will lead to decreasing springback value. From this finding, a proper prevention method can be taken to eliminate springback, achieve improvement in the forming process as well as reduce processing time and cost.


1992 ◽  
Vol 114 (4) ◽  
pp. 441-451 ◽  
Author(s):  
S. Brown ◽  
H. Song

Current simulations of welding distortion and residual stress have considered only the local weld zone. A large elastic structure surrounding a weld, however, can couple with the welding operation to produce a final weld state much different from that resulting when a smaller structure is welded. The effect of this coupling between structure and weld has the potential of dominating the final weld distortion and residual stress state. This paper employs both two-and three-dimensional finite element models of a circular cylinder and stiffening ring structure to investigate the interaction of a large structure on weld parameters such as weld gap clearance (fitup) and fixturing. The finite element simulation considers the full thermo-mechanical problem, uncoupling the thermal from the mechanical analysis. The thermal analysis uses temperature-dependent material properties, including latent heat and nonlinear heat convection and radiation boundary conditions. The mechanical analysis uses a thermal-elastic-plastic constitutive model and an element “birth” procedure to simulate the deposition of weld material. The effect of variations of weld gap clearance, fixture positions, and fixture types on residual stress states and distortion are examined. The results of these analyses indicate that this coupling effect with the surrounding structure should be included in numerical simulations of welding processes, and that full three-dimensional models are essential in predicting welding distortion. Elastic coupling with the surrounding structure, weld fitup, and fixturing are found to control residual stresses, creating substantial variations in highest principal and hydrostatic stresses in the weld region. The position and type of fixture are shown to be primary determinants of weld distortion.


Sign in / Sign up

Export Citation Format

Share Document