Study on the Optimal Design of the Members of Contaniner Building with Building Materials II: Joint and Corner Column Optimization

2013 ◽  
Vol 859 ◽  
pp. 266-269 ◽  
Author(s):  
Xiao Xiong Zha ◽  
Yang Zuo ◽  
Shi Yun Chen

Containers are widely used for building, in order to promote the use of container building, it is necessary to do the research on optimal design. The corresponding optimal design has been achieved through the software package of HyperWorks, the lightest total weight is taken as the objective function, and the strength and stiffness are taken as the constraint conditions. Based on the finite element analysis of the joint and corner column, the cross-sectional size is taken as design variables, and then the optimization design of joint and corner column of container building is made.

2013 ◽  
Vol 859 ◽  
pp. 270-273 ◽  
Author(s):  
Xiao Xiong Zha ◽  
Yang Zuo ◽  
Shi Yun Chen

Container, as a light steel structure, being increasingly used in building construction, containers used in construction has many advantages and applications. However, the current study mostly from the view of the architecture, as for the mechanical properties of the container building has not mentioned, that brings obstacles of the application and development of the container building. Based on the software package of HyperWorks and optimization design theory, the cross-sectional size of container building is taken as design variables, and then selected objective function and constraint functions. Finally, calculated by software, get the optimal cross-sectional dimension.


2016 ◽  
Vol 693 ◽  
pp. 243-250
Author(s):  
Zhi Zhong Guo ◽  
Yun Shun Zhang ◽  
Shi Hao Liu

It is discovered that the vibration resistance of spindle systems needs to be improved based on the statics analysis, modal analysis and heating-force coupling analysis of spindle systems of CNC gantry machine tools. The design variables of optimization are set according to sensitivity analysis, multi-objective and dynamic optimization design is realized and its designing scheme is gained for spindle structure. The research results show that vibration resistance can be improved without change of the quality and static property of spindle systems of CNC gantry machine tools.


2011 ◽  
Vol 105-107 ◽  
pp. 615-618 ◽  
Author(s):  
Zhen Ping Zhou ◽  
Di Jiang ◽  
Jia Liang Li

Gantry bucket wheel stacker-reclaimer belongs to large complex steel structure. Once it is instability at the working time that will make a large accident. So we have to calculate its strength and stiffness. But its connection and the working condition are very complex. And the size of the model is so large which leads to debase the calculation efficiency. This paper use Pro/E software to create the model. And use Pro/Mechanical to make a finite element analysis. Through the properly simplified the model, we can increase the calculation efficiency. During the calculation result we find that the Pulley yoke, Rigid leg and Flexible leg appear big stress areas. We will give an optimization design for the irrational place and high stress areas. So that to improve the Gantry bucket wheel stacker-reclaimer on-site safety. And provide a certain reference for the subsequent design and improvement.


1992 ◽  
Vol 114 (4) ◽  
pp. 428-432 ◽  
Author(s):  
L. Younsheng ◽  
L. Ji

In this paper, sensitivity analysis for a finite element model during shape optimization design for a pressure vessel is discussed. The derivation is emphatically carried out for the derivatives of stiffness matrix and various load ranks with respect to design variables. Because the information resulting from the finite element analysis is fully utilized in this method, the programs are greatly simplified so that it becomes possible to carry out the shape optimization with comparatively more versatility. The conclusion is illustrated by an example.


2014 ◽  
Vol 945-949 ◽  
pp. 1135-1138
Author(s):  
Tao Liang ◽  
Chun Ling Meng ◽  
Yang Li ◽  
Xiu Hua Zhao

The finite element analysis of large air cooling tower was carried out using ABAQUS. On the basis of strength above,8 types of the axial force are analyzed and summarized, find valuable rules, and put forward the further optimization design. So that it can satisfy the strength and stability of air cooling tower, the structure is more reasonable, reduce weight, reduce the cost.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


Author(s):  
Jing Han ◽  
Koetsu Yamazaki ◽  
Sadao Nishiyama ◽  
Ryoichi Itoh

This paper has introduced the finite element analysis (FEA) into the ergonomic design to evaluate the human feelings numerically and objectively, and then into the optimization design of beverage containers considering human factors. In the design of the end of can (the lid of can), experiments and the FEA of indenting vertically the fingertip pulp by a probe and the tab of end have been done to observe force responses and to study feelings in the fingertip. A numerical simulation of finger lifting the tab for opening the can has also been performed, and discomfort in the fingertip has been evaluated numerically to present the finger-accessibility of the tab. The comparison of finger-accessibility between two kinds of tab ring shape designs showed that the tab that may have a larger contact area with the finger is better. In the design of beverage bottles served hot drinks, the FEA of tactile sensation of heat has been performed to evaluate numerically the touch feeling of the finger when holding the hot bottle. The numerical simulations of embossing process have also been performed to evaluate the formability of various rib-shape designs. The optimum design has then been done considering the hot touch feeling as well as the metal sheet formability.


Author(s):  
Francesco Rea ◽  
Francesco Amoroso ◽  
Rosario Pecora ◽  
Maria Chiara Noviello ◽  
Maurizio Arena

In the framework of Clean Sky 2 Airgreen 2 (REG-IADP) European research project, a novel multifunctional morphing flap technology was investigated to improve the aerodynamic performances of the next Turboprop regional aircraft (90 passengers) along its flight mission. The proposed true-scale device (5 meters span with a mean chord of 0.6 meters) is conceived to replace and enhance conventional Fowler flap with new functionalities. Three different functions were enabled: overall airfoil camber morphing up to +30° (mode 1), +10°/−10° (upwards/downwards) deflections of the flap tip segment (mode 2), flap tip “segmented” twist of ±5° along the outer flap span (mode 3). Morphing mode 1 is supposed to be activated during take-off and landing only to enhance aircraft high-lift performances and steeper initial climb and descent. Thanks to this function, more airfoil shapes are available at each flap setting and therefore a dramatic simplification of the flap deployment system may be implemented. Morphing modes 2 and 3 are enabled in cruise and off-design flight conditions to improve wing aerodynamic efficiency. The novel structural concept of the three-modal morphing Fowler flap (3MMF) was designed according to the challenges posed by real wing installation issues. The proposed concept consists of a multi-box arrangement activated by segmented ribs with embedded inner mechanisms to realize the transition from the baseline configuration to different target aero-shapes while withstanding the aerodynamic loads. Lightweight and compact actuating leverages driven by electromechanical motors were properly synthesized to comply with stringent requirements for real aircraft implementation: minimum actuating torque, minimum number of motors, reduced weight, and available design space. The methodology for the kinematic design of the inner mechanisms is based on a building block approach where the instant center analysis tool is used to preliminary select the locations of the hinges’ leverages. The final geometry of the inner mechanisms is optimized to maximize the mechanical advantage as well as to provide the kinematic performances required by the three different morphing modes. The load-path was evaluated, and the cross-sectional size of leverages was subsequently optimized. Finally, actuating torques predicted by instant center analysis were compared to the calculated values from finite element analysis. The structural sizing process of the multi-box arrangement was carried out considering elementary methods, and results were compared with finite element simulations.


Sign in / Sign up

Export Citation Format

Share Document