Aeolian Vibration Analysis of Different Node Connectivity Steel Rods

2013 ◽  
Vol 860-863 ◽  
pp. 2975-2980
Author(s):  
Li Qin ◽  
Yue Huang ◽  
Pei Jie Zhang ◽  
Hao Shu Ding

ANSYS is applied to establish finite element model of steel rods with different slenderness ratio (50-250) and differernt node connectivity ([-shaped gusset plate, U-shaped gusset plate, cross-gusset and flange). Modal analysis is used to obtain the first-order natural frequency and VIV formula is used to obtain the first-order critical wind speed of steel rods. Contrasting the simulation value with the corresponding value given by the specification, the results show that there is a great difference between the first-order critical wind speed of most steel rods and the corresponding value given by the specification.

2012 ◽  
Vol 182-183 ◽  
pp. 1630-1633
Author(s):  
Hao Jun Hu ◽  
Yuan Han Wang ◽  
Zi Dong Hu

Based on the second development at the ANSYS computing platform, finite element model of a Tower-Line Coupling system was established. The computational fluid dynamics module (CFX) was used for the numerical simulation of the aerodynamic characteristics of iced conductor. On the basis of the Kaimal spectrum, fast Fourier transform was introduced to prepare the wind speed simulation program WVFS with spatial correlation into consideration, thus generating aerodynamic coefficients of iced conductor at different wind attack angles as well as wind speed time series at tower-line nodes. According to the finite element model of continuous multi-conductors and the aerodynamic force- wind attack angle curve, the explicit integration is applied for numerical solution of galloping of iced conductor.


2003 ◽  
Vol 17 (5) ◽  
pp. 679-690 ◽  
Author(s):  
Dong-Woohn Kim ◽  
Jin Koo Lee ◽  
No-Cheol Park ◽  
Young Pil Park

2017 ◽  
Vol 893 ◽  
pp. 380-383
Author(s):  
Jun Xia ◽  
Z. Shen ◽  
Kun Liu

The tapered cross-section beams made of steel-concrete composite material are widely used in engineering constructions and their dynamic behavior is strongly influenced by the type of shear connection jointing the two different materials. The 1D high order finite element model for tapered cross-section steel-concrete composite material beam with interlayer slip was established in this paper. The Numerical results for vibration nature frequencies of the composite beams with two typical boundary conditions were compared with ANSYS using 2D plane stress element. The 1D element is more efficient and economical for the common tapered cross-section steel-concrete composite material beams in engineering.


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


2012 ◽  
Vol 160 ◽  
pp. 64-68
Author(s):  
Hui Fang Xue ◽  
You Wang

Based on the vibration problem of the plane gate in the inverted siphon exit of a large-scale hydraulic project in northern Xinjiang, the software ANSYS is used to build the entity model and finite element model. Considering the influence of fluid-solid coupling, the self-vibration characteristics of the gate in the water and without water are analyzed. The first six self-vibration frequencies and vibration modes of the gate are calculated. The results show that the height of water has a significant impact on the self-vibration frequencies of the plane gate. The first order natural frequency on the condition of small opening is decreased by 28.5%. It shows that the structure of the plane gate must be improved.


Sign in / Sign up

Export Citation Format

Share Document