Water Poverty Index in the Inland River Basins of Hexi Corridor, Gansu Province

2013 ◽  
Vol 864-867 ◽  
pp. 2371-2375 ◽  
Author(s):  
Yan Hui Pan ◽  
Chun Jie Gu ◽  
Jin Zhu Ma ◽  
Tian Shu Zhang ◽  
Hui Zhang

Since the economic development and environment deteriorating, water security has become an increasingly serious problem in the world. A number of regions are suffering water scarcity and pollution. The Water Poverty Index (WPI) could provide a standardized evaluation framework for the utilization and development of water resources in a certain region. This article based on the calculation of WPI, analyzed the components of WPI at basin scale, and calculated the WPI at Shule river basin, Shiyang river basin and Heihe River Basin, thereby, identified the water security and find out the main problems of water resource management and utilization in the three inland river basins in Gansu corridor.

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2213
Author(s):  
Guohua Liu ◽  
Rensheng Chen ◽  
Kailu Li

Glacial changes have great effects on regional water security because they are an important component of glacierized basin runoff. However, these impacts have not yet been integrated and evaluated in the arid/semiarid inland river basins of western China. Based on the degree-day glacier model, glacier changes and their hydrologic effects were studied in 12 subbasins in the Shiyang River basin (SYRB), Heihe River basin (HHRB) and Shule River basin (SLRB). The results showed that the glacier area of each subbasin decreased by 16.7–61.7% from 1965 to 2020. By the end of this century, the glacier areas in the three basins will be reduced by 64.4%, 72.0% and 83.4% under the three climate scenarios, and subbasin glaciers will disappear completely after the 2070s even under RCP2.6. Glacial runoff in all subbasins showed a decreasing–increasing–decreasing trend, with peak runoff experienced in 11 subbasins during 1965~2020. The contribution of glacial meltwater to total runoff in the basin ranged from 1.3% to 46.8% in the past, and it will decrease in the future due to increasing precipitation and decreasing glacial meltwater. However, the scale differences in glacier runoff are significant when aggregated over the region/basin/subbasin. This suggests that the results of large-scale generalization may be misleading for subbasin glacier water resource evaluations. Therefore, the hydrological effects of glaciers should be studied more in subbasins to provide an accurate reference for practical water resource management.


2011 ◽  
Vol 250-253 ◽  
pp. 3469-3474 ◽  
Author(s):  
Xin Li ◽  
Jun Wan ◽  
Jie Lin Jia

As one assessment method of the water resources, Water Poverty Index has become an available tool in water resources management for it simply calculation process, comprehensive understanding of the results. This paper introduces the concept of the Water Poverty Index, and applies it at these districts of Yellow River Basin by using equal weightings methodology. During the process of calculating it, some component variables of the WPI have been improved and the data addressed standardization. The result shows that the water resources of Shandong is safe, Sichuan and Henan province is middling safe and low safe, while the WPI of the other six provinces is so low which reflects water resources shortage is very severe. The same time, this paper analysis the main reasons of water poverty, which provides the access to improve the water resource management in these districts.


2016 ◽  
Vol 16 (5) ◽  
pp. 1266-1276 ◽  
Author(s):  
Xia Tang ◽  
Qi Feng

This paper details an application of the Water Poverty Index (WPI) to evaluate the state of water resources in an inland river basin using a case study of the Heihe River Basin (HRB) located in northwest China. The WPI includes five components (resources, access, capacity, use, and environment) and has 13 indicators; each indicator is assigned an equal weighting. The selected set of components and indicators was used to discuss the spatial and temporal variation of the water scarcity situation in the middle of the HRB for a 10-year assessment period. The results show that the water scarcity situation of the HRB is generally evolving in a positive way from 2001 to 2010. However, the WPI varied widely (from 24.6 to 66.5) at a spatial scale. The water situation was best maintained in Jiayuguan City, and it was most severe in Jiuquan City. These variations suggest that different cities require different policy intervention to improve the overall water situation. Overall, the WPI appears to be a reasonable approach to examine the water scarcity situation and help decision makers to better devise local policy.


2022 ◽  
Vol 14 (2) ◽  
pp. 927
Author(s):  
Zhanna Buryak ◽  
Fedor Lisetskii ◽  
Artyom Gusarov ◽  
Anastasiya Narozhnyaya ◽  
Mikhail Kitov

The quantitative and qualitative depletion of water resources (both surface and groundwater) is closely related to the need to protect soils against degradation, rationalization of land use, and regulation of surface water runoff within the watershed area. Belgorod Oblast (27,100 km2), one of the administrative regions of European Russia, was chosen as the study area. It is characterized by a high activity of soil erosion (the share of eroded soils is about 48% of the total area of arable land). The development phase of the River Basin Environmental Management Projects (217 river basins from the fourth to seventh order) allowed for the proceeding of the development of an integrated monitoring system for river systems and river basin systems. The methods used to establish a geoecological network for regional monitoring include the selection and application of GIS techniques to quantify the main indicators of ecological state and predisposition of river basins to soil erosion (the share of cropland and forestland, the share of the south-oriented slopes, soil erodibility, Slope Length and Steepness (LS) factor, erosion index of precipitation, and the river network density) and the method of a hierarchical classification of cluster analysis for the grouping of river basins. An approach considering the typology of river basins is also used to expand the regional network of hydrological gauging stations to rationalize the national hydrological monitoring network. By establishing 16 additional gauging stations on rivers from the fourth to seventh order, this approach allows for an increase in the area of hydro-agroecological monitoring by 1.26 times (i.e., up to 77.5% of the total area of Belgorod Oblast). Some integrated indicators of agroecological (on the watershed surface) and hydroecological (in river water flow) monitoring are proposed to improve basin environmental management projects. Six-year monitoring showed the effectiveness of water quality control measures on an example of a decrease in the concentrations of five major pollutants in river waters.


2020 ◽  
Author(s):  
Yao Jiang ◽  
Zongxue Xu

<p>Understanding the dynamics of basin-scale water budgets over the Tibetan Plateau (TP) is significant for hydrology and water resource management in the southern and eastern Asia. However, a detailed water balance analysis is limited by the lack of adequate hydro-climatic observations in this region. In this study, we investigate the spatiotemporal variation of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q etc.) in the Yarlung Tsangpo River basin (YTB) of southeast TP during the period of 1975-2015 through using multi-source datasets (e.g. insitu observation, remote sensing data products, reanalysis outputs and model simulations etc.). The change trend of water budget components and vegetation parameters was analyzed in the YTB on interannual scale. The results indicated that the detailed water budgets are different from upstream to downstream YTB due to different temperature, vegetation cover and evapotranspiration, which are mainly affected by different climate conditions. In the whole basin, precipitation that are mainly during June to October was the major contributor to the runoff. The P and Q were found to show a slight but insignificant decrease in most regions of YTB since the late 1990s, which showed positive relationships with the weakening Indian summer monsoon. While the ET showed an insignificant increase across most of the YTB, especially in the middle basin. The runoff coefficient (Q/P) exhibited an indistinctively decreasing trend which may be, to some extent, due to the overlap effects of ET increase and snow and glacier changes. The obtained results offer insights into understanding the evolution mechanism of hydrological processes in such a data-sparse region under changing environment.</p>


2018 ◽  
Vol 22 (1) ◽  
pp. 351-371 ◽  
Author(s):  
Wenbin Liu ◽  
Fubao Sun ◽  
Yanzhong Li ◽  
Guoqing Zhang ◽  
Yan-Fang Sang ◽  
...  

Abstract. The dynamics of basin-scale water budgets over the Tibetan Plateau (TP) are not well understood nowadays due to the lack of in situ hydro-climatic observations. In this study, we investigate the seasonal cycles and trends of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q) in 18 TP river basins during the period 1982–2011 through the use of multi-source datasets (e.g. in situ observations, satellite retrievals, reanalysis outputs and land surface model simulations). A water balance-based two-step procedure, which considers the changes in basin-scale water storage on the annual scale, is also adopted to calculate actual ET. The results indicated that precipitation (mainly snowfall from mid-autumn to next spring), which are mainly concentrated during June–October (varied among different monsoons-impacted basins), was the major contributor to the runoff in TP basins. The P, ET and Q were found to marginally increase in most TP basins during the past 30 years except for the upper Yellow River basin and some sub-basins of Yalong River, which were mainly affected by the weakening east Asian monsoon. Moreover, the aridity index (PET/P) and runoff coefficient (Q/P) decreased slightly in most basins, which were in agreement with the warming and moistening climate in the Tibetan Plateau. The results obtained demonstrated the usefulness of integrating multi-source datasets to hydrological applications in the data-sparse regions. More generally, such an approach might offer helpful insights into understanding the water and energy budgets and sustainability of water resource management practices of data-sparse regions in a changing environment.


Author(s):  
Kazuyoshi Suzuki ◽  
Koji Matsuo ◽  
Dai Yamazaki ◽  
Kazuhito Ichii ◽  
Yoshihiro Iijima ◽  
...  

The Arctic freshwater budget is critical for understanding the climate in the northern regions. However, the hydrology of the Arctic circumpolar tundra region (ACTR) and the largest pan-Arctic rivers are still not well understood. In the present paper, we analyze the spatiotemporal variations in terrestrial water storage (TWS) of the ACTR, including three of its largest pan-Arctic river basins (Lena, Mackenzie, Yukon), using monthly Gravity Recovery and Climate Experiment (GRACE) data from 2002 to 2016. Together with global land reanalysis, river runoff, and inundation extent area (IEA) data, we identify declining TWS trends throughout the ACTR that we attribute largely to increasing evapotranspiration driven by increasing summer air temperatures. In terms of regional changes, large and significant negative trends in TWS are observed mainly over the North American continent. At basin scale, we show that, in the Lena River basin, the autumnal TWS signal persists until the winter of the following year, while in the Mackenzie River basin, the TWS levels in the autumn and winter has no significant impact on the following year. As global warming is expected to be particularly significant in the northern regions, our results are important for understanding future TWS trends, with possible further decline.


2012 ◽  
Vol 16 (8) ◽  
pp. 2859-2870 ◽  
Author(s):  
C. F. Zang ◽  
J. Liu ◽  
M. van der Velde ◽  
F. Kraxner

Abstract. In arid and semi-arid regions freshwater resources have become scarcer with increasing demands from socio-economic development and population growth. Until recently, water research and management has mainly focused on blue water but ignored green water. Furthermore, in data poor regions hydrological flows under natural conditions are poorly characterised but are a prerequisite to inform future water resources management. Here we report on spatial and temporal patterns of both blue and green water flows that can be expected under natural conditions as simulated by the Soil and Water Assessment Tool (SWAT) for the Heihe river basin, the second largest inland river basin in Northwest China. Calibration and validation at two hydrological stations show good performance of the SWAT model in modelling hydrological processes. The total green and blue water flows were 22.05–25.51 billion m3 in the 2000s for the Heihe river basin. Blue water flows are larger in upstream sub-basins than in downstream sub-basins mainly due to high precipitation and a large amount of snow and melting water in upstream. Green water flows are distributed more homogeneously among different sub-basins. The green water coefficient was 87%–89% in the 2000s for the entire river basin, varying from around 80%–90% in up- and mid-stream sub-basins to above 90% in downstream sub-basins. This is much higher than reported green water coefficients in many other river basins. The spatial patterns of green water coefficients were closely linked to dominant land covers (e.g. snow cover upstream and desert downstream) and climate conditions (e.g. high precipitation upstream and low precipitation downstream). There are no clear consistent historical trends of change in green and blue water flows and the green water coefficient at both the river basin and sub-basin levels. This study provides insights into green and blue water endowments under natural conditions for the entire Heihe river basin at the sub-basin level. The results are helpful to benchmark the natural flows of water in the basin as part of improved water resources management in the inland river basins of China.


Sign in / Sign up

Export Citation Format

Share Document