The Research of Non-Oriented Electrical Steel Processed by Stress Relief Annealing Experiments

2014 ◽  
Vol 887-888 ◽  
pp. 252-256
Author(s):  
Zhun Li ◽  
Jing Liu ◽  
Shi De Li ◽  
Ze Lin Zheng

A high grade non-oriented electrical steel final annealing product was processed by stress relief annealing experiments under pure hydrogen atmosphere using different process parameters. The samples were compared in the aspects of magnetic properties and anisotropy, then analyzed the phenomena concerned with grain size, texture and precipitates aspects. The experiments showed that the samples magnetic properties were most improved in the 850 degrees stress relief annealing experiment, thus providing a reference method for non-oriented silicon steel stress relief annealing experiments and to obtain low core loss non-oriented silicon steel.

1989 ◽  
Vol 11 (2-4) ◽  
pp. 159-170 ◽  
Author(s):  
M. Shiozaki ◽  
Y. Kurosaki

The anisotropy of magnetic properties in non-oriented electrical steel sheets can be evaluated by measuring Epstein specimens in the radial directions. The magnetic properties measured on ring cores are practically equal to the approximate values of magnetic properties determined by Epstein specimens in the radial directions. Non-oriented electrical steel sheets with anisotropy are not desirable for motors but are suitable for transformers and fluorescent lamp ballasts. The core loss and magnetic induction as measured with ring specimens are better with non-oriented electrical steel sheets with anisotropy than with non-oriented electrical steel sheets with random crystallographic orientation. This phenomenon depends on the texture change of the product.


2019 ◽  
Vol 55 (1) ◽  
pp. 39-46
Author(s):  
W. Kong ◽  
D.G. Cang

The submerged entry nozzle (SEN) clogging has been happening during continuous casting (or CC for short) for nonoriented silicon steel. To solve the problem, the paper studied a flow rate through SEN, a node attached to one of them, and the impact on the clogging. The results showed that when SEN is clogged seriously, the casting speed has to decrease below the target casting speed and that SEN clogging can be predicted by comparing the actual value and the theoretical one of a casting speed. Al2O3 and its composite inclusions caused the SEN clogging and the addition of Ca can solve SEN clogging during CC of the silicon steel both theoretically and practically. Furthermore, the impact of the addition of Ca on the magnetic properties of the steel were analyzed. The results showed that the core loss and the magnetic induction of the silicon steel decreased by using the addition of Ca, which generated more dissolved Aluminum, and the addition of Ca generated more harmful textures, which reduced the magnetic induction.


2014 ◽  
Vol 33 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Yong Wan ◽  
Wei-qing Chen ◽  
Shao-jie Wu

AbstractThe effects of lanthanum and boron on the inclusion size distribution, microstructure, texture and magnetic properties of three non-oriented electrical steels have been studied. After final annealing, lanthanum effectively inhibited the precipitation of MnS precipitates and promoted the growth of grains, an addition of 0.0041 wt.% boron led to the precipitation of Fe2B particles and inhibited grain growth. On the other hand, steel containing 0.0055 wt.% lanthanum had the strongest {100} and {111} fiber texture and the weakest {112}〈110〉 texture among the steels. Compared to steel without lanthanum and boron, steel with 0.0050 wt.% lanthanum and 0.0041 wt.% boron obtained slightly stronger intensities of {100} and {111} fiber texture, and a little weaker intensity of {112}〈110〉 texture. Steel containing 0.0055 wt.% lanthanum achieved the best magnetic properties, whose core loss and magnetic flux density were 4.268 W/kg and 1.768 T, respectively.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2200 ◽  
Author(s):  
Ivan Petryshynets ◽  
František Kováč ◽  
Ján Füzer ◽  
Ladislav Falat ◽  
Viktor Puchý ◽  
...  

Currently, the non-oriented (NO) iron-silicon steels are extensively used as the core materials in various electrical devises due to excellent combination of their mechanical and soft magnetic properties. The present study introduces a fairly innovative technological approach applicable for fully finished NO electrical steel before punching the laminations. It is based on specific mechanical processing by bending and rolling in combination with subsequent annealing under dynamic heating conditions. It has been revealed that the proposed unconventional treatment clearly led to effective improvement of the steel magnetic properties thanks to its beneficial effects involving additional grain growth with appropriate crystallographic orientation and residual stress relief. The philosophy of the proposed processing was based on employing the phenomena of selective grain growth by strain-induced grain boundary migration and a steep temperature gradient through the cross-section of heat treated specimens at dynamic heating conditions. The stored deformation energy necessary for the grain growth was provided by plastic deformation induced within the studied specimens during the bending and rolling process. The magnetic measurements clearly show that the specimens treated according to our approach exhibited more than 17% decrease in watt losses in comparison with the specimens treated by conventional heat treatment leading only to stress relief without additional grain growth.


2016 ◽  
Vol 26 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Yongjian Li ◽  
Lei Cao ◽  
Changgeng Zhang ◽  
Qingxin Yang ◽  
Erping Li

2012 ◽  
Vol 602-604 ◽  
pp. 435-440 ◽  
Author(s):  
Na Li ◽  
Li Xiang ◽  
Pei Zhao

The effect of antimony on the structure, texture and magnetic properties of high efficiency non-oriented electrical steel were investigated. The results showed that antimony played an important role on inhibiting the grain growth and enhancing the fraction of favorable texture in the annealed steels. With the increase of antimony content, core loss of specimens monotonously increased and the magnetic flux density increased firstly and then decreased. The magnetic properties of specimen results showed that the magnetic flux density in the steel with 0.12% antimony reached the maximum value, while the core loss didn’t increase obviously. However, when the antimony content in steel reached 0.22%, the magnetic properties deteriorated significantly. This is maybe that the addition of antimony in steels inhibited the development of {111} texture content and increased the intensity of Goss and {100} texture on the grain boundary.


2019 ◽  
Vol 116 (2) ◽  
pp. 207
Author(s):  
Wei Kong ◽  
Ying-feng Chen ◽  
Da-qiang Cang

There are always differences between the magnetic properties (core loss and magnetic induction) of the head and those of the tail, with the same chemical composition, in a medium-grade non-oriented silicon steel coil (or MGNO for short). To work out the reason leading to the differences and get methods to increase the magnetic properties, this paper studied the types and the distribution of the inclusions in MGNO, and the effects of the inclusions on the magnetic properties of the MGNO, by using SEM + FEEM observation and statistic analysis. The results show that there are oxide inclusions, sulfide inclusions, nitride inclusions and composite inclusions in the MGNO. More inclusions shorter than 500 nm are bad for the magnetic properties of the MGNO. On a lower order of the sizes, the number of the inclusions would more obviously affect the MGNO on its magnetic properties. The Al2O3 shorter than 1 µm and the MnS whose size is 100∼500 nm are the main inclusions that decrease the magnetic properties of the MGNO. In order to get better magnetic properties of the MGNO, the steelmaking process and the hot rolling process should be improved, chiefly the RH and the heat furnace.


2009 ◽  
Vol 1243 ◽  
Author(s):  
Emmanuel J. Gutiérrez ◽  
Castañeda ◽  
Armando Salinas Rodriguez

ABSTRACTEffects of hot band annealing on the final microstructure and magnetic properties of cold rolled and annealed non-oriented grain Si-Al electrical steel strips are investigated. Microstructures are characterized using optical and scanning electron microscopy and magnetic properties are determined using a vibrating sample magnetometer. It is shown that annealing of hot rolled bands at temperatures between 800 and 850 °C causes rapid decarburization and development of a microstructure consisting of large columnar ferrite grains free of secondary particles. This microstructure leads, after cold rolling and a fast annealing treatment, to large grain microstructures similar to those observed in production scale, fully processed strips. It is observed that the final grain size increases with the final annealing temperature, leading to a significant improvement of the magnetic properties. Therefore, hot band annealing technology can be an attractive alternative processing route for the manufacture of non-oriented grain low carbon Si-Al processed electrical steel strips.


Sign in / Sign up

Export Citation Format

Share Document