Structural Integrity – Yesterday – Today – Tomorrow

2014 ◽  
Vol 891-892 ◽  
pp. 1053-1058 ◽  
Author(s):  
Michel Guillaume ◽  
Andreas Uebersax ◽  
Georges Mandanis ◽  
Cyril Huber

Early airplanes were designed using purely static conditions and mainly tested only with simple wing tests. But despite the significant advances in design, manufacturing and testing capabilities, structural failures may still occur. Thus new concepts are required to ensure safe operations over the lifetime of an airframe. In 1952 Juerg Branger developed a concept for a fatigue simulator at the Federal Swiss Aircraft Factory (F+W). The Pilatus P3 trainer became the first airplane to be tested in Emmen, Switzerland to demonstrate the safety of the airframe over a lifetime of 2500 FH. This first test demonstrated the importance of full scale fatigue tests to ensure the structural integrity of the airframe. Due to the intense usage of the fighters deployed by the Swiss Air Force, further full scale fatigue tests were undertaken on the Venom, the Mirage III, and the F/A-18. As the complexity of the materials used in modern aircraft design increases, more and more analysis is being taken over by highly sophisticated software and test procedures. Structural integrity is still an important means to ensure safe operations in aviation for all types of airplanes.

2014 ◽  
Vol 891-892 ◽  
pp. 1059-1064 ◽  
Author(s):  
Lorrie Molent ◽  
Simon A. Barter ◽  
Matthew Gordon ◽  
Liam Weibler

Aircraft full-scale fatigue tests are expensive to conduct and they are a critical item on the certification path of any aircraft design or modification. Two aspects that contribute to the cost of a test are its duration and the loads spectrum development process. This paper provides a summary of a proposed supplemental pseudo full-scale fatigue test (FSFT) aimed at rapid certification. In this instance the method was developed with the aid of extant FSFTs that were found to be deficient. The proposed process involves the development of proof loads, damage size estimates, a loads application rig, insertion of the target damage or modifications and conducting proof testing. As all locations with a propensity to crack are known, the process is considered to be the equivalent of having conducted a representative fatigue test for the required service life target and then demonstrating adequate residual strength (i.e. proof testing the damage state at the end of a FSFT).


Author(s):  
Helen Boyd ◽  
Erwan Karjadi ◽  
Harm Demmink ◽  
Guido Ridolfi ◽  
Han Keijzers

In 2012 and 2013 Heerema Marine Contractors (HMC) performed full installation testing (bend, roller, tensioner and friction clamp) on pipes with different types of coating ranging from three layer polypropylene to thick insulation coating. The material property data as supplied by the coaters and/or the material suppliers appeared to have insufficient details for HMC to develop a model for the coated pipes. In order to obtain the missing details, HMC undertook a program of material finger printing for all coating materials used in the recent full scale testing in order to establish our own baseline for material properties. The reasons for doing so were; i) the data sheets from different suppliers of similar products were based on different test procedures and the results were not directly comparable, ii) initial testing indicated that the results quoted on the data sheets could not always be achieved by HMC and iii) the data as provided by the suppliers appeared to be not sufficient to be used for material models for finite element analysis. The focus to date has been on polyurethane based insulation materials, both for line pipe coating and for field joint coating, although the plan is to continue with polypropylene based insulation materials. The purpose of this paper is to discuss the setup of the full scale level winder and bend tests, the measurements and observations from the tests, the preliminary finite element analyses of the coating and the findings from the finger printing testing to date.


Author(s):  
URI BEN-SIMON ◽  
SHAY SHOHAM ◽  
ROY DAVIDI ◽  
NADAV GOLDSTEIN ◽  
IDDO KRESSEL ◽  
...  

1986 ◽  
Vol 72 ◽  
Author(s):  
Theresa L. Baker ◽  
Stephen W. Freiman

AbstractThis study involved the determination of the effects of composition and microstructure on the fracture toughness and susceptibility to environmentally enhanced crack growth of several ceramic materials used in multilayer capacitors. Indentation-fracture procedures were used to measure KIC as well as to assess the possible effects of internal stresses on the fracture behavior of these materials and to correlate dielectric aging phenomena with strength. The environmentally enhanced crack growth behavior of these materials was determined by conducting dynamic fatigue tests in water.


2016 ◽  
Vol 17 ◽  
pp. 14-30 ◽  
Author(s):  
Okechukwu P. Nwachukwu ◽  
Alexander V. Gridasov ◽  
Ekaterina A. Gridasova

This review looks into the state of gigacycle fatigue behavior of some structural materials used in engineering works. Particular attention is given to the use of ultrasonic fatigue testing machine (USF-2000) due to its important role in conducting gigacycle fatigue tests. Gigacycle fatigue behavior of most materials used for very long life engineering applications is reviewed.Gigacycle fatigue behavior of magnesium alloys, aluminum alloys, titanium alloys, spheroid graphite cast iron, steels and nickel alloys are reviewed together with the examination of the most common material defects that initiate gigacycle fatigue failures in these materials. In addition, the stage-by-stage fatigue crack developments in the gigacycle regime are reviewed. This review is concluded by suggesting the directions for future works in gigacycle fatigue.


Author(s):  
Fei Song ◽  
Ke Li

Abstract In this paper, a hybrid computational framework that combines the state-of-the art machine learning algorithm (i.e., deep neural network) and nonlinear finite element analysis for efficient and accurate fatigue life prediction of rotary shouldered threaded connections is presented. Specifically, a large set of simulation data from nonlinear FEA, along with a small set of experimental data from full-scale fatigue tests, constitutes the dataset required for training and testing of a fast-loop predictive model that could cover most commonly used rotary shouldered connections. Feature engineering was first performed to explore the compressed feature space to be used to represent the data. An ensemble deep learning algorithm was then developed to learn the underlying pattern, and hyperparameter tuning techniques were employed to select the learning model that provides the best mapping, between the features and the fatigue strength of the connections. The resulting fatigue life predictions were found to agree favorably well with the experimental results from full-scale bending fatigue tests and field operational data. This newly developed hybrid modeling framework paves a new way to realtime predicting the remaining useful life of rotary shouldered threaded connections for prognostic health management of the drilling equipment.


Author(s):  
Bo Wang ◽  
Yung-Sup Shin ◽  
Eric Norris

The objective of this study is to investigate the relationship between the maximum allowable hull deformation, which includes global elongation and local deflection, and the capacity of the CCS in membrane-type LNG vessels. The LNG CCS mainly consists of the primary barrier (e.g. a corrugated membrane for GTT MK III system and an invar membrane for GTT NO 96 system) and the insulation panel which is attached to the inner hull through mastics or couplers. The excessive hull elongation due to dynamic wave loads may cause fatigue damage of the primary barrier. Thus, the maximum allowable hull elongation (global deformation) can be determined based on the fatigue strength of the primary barrier. On the other hand, the excessive hull deflection due to cargo or ballast water pressure may cause failure of the insulation panel and the mastic. Therefore, the maximum allowable hull deflection (local deformation) in the hull design can be determined based on the strength of the insulation panel and the mastic. In the present paper, the determination of fatigue life vs. strain curves of materials has been summarized for the primary barrier. Fatigue curves based on either structural fatigue tests or standard specimen tests can be applied in fatigue assessment of a primary barrier. As an example, the finite element (FE) analysis has been conducted on the MK III CCS with the hull structure under pressure loads. Two different load cases including full load and ballast load conditions have been considered to evaluate the structural integrity of the insulation system in numerical simulations. FE results show that the mechanical behavior of the insulation system and the mastic under the maximum allowable hull deflection has been examined based on the yielding strength of each individual component. Finally, the complete procedure to determine the maximum allowable hull elongation and the maximum allowable hull deflection has been developed for meeting the requirements of containment system design for membrane-type LNG carriers.


2018 ◽  
Vol 32 (11) ◽  
pp. 5097-5104 ◽  
Author(s):  
Qiang Ma ◽  
Zong-Wen An ◽  
Jian-Xiong Gao ◽  
Hai-Xia Kou ◽  
Xue-Zong Bai

Author(s):  
Gregory C. Sarvanis ◽  
Spyros A. Karamanos ◽  
Polynikis Vazouras ◽  
Panos Dakoulas ◽  
Elisabetta Mecozzi ◽  
...  

Hydrocarbon pipelines constructed in geohazards areas, are subjected to ground-induced actions, associated with the development of severe strains in the pipeline and constitute major threats for their structural integrity. In the course of pipeline design, calculation of those strains is necessary for safeguarding pipeline integrity, and the development of reliable analytical/numerical design tools that account for soil-pipe interaction is required. In the present paper, soil-pipe interaction models for buried steel pipelines subjected to severe ground-induced actions are presented. First, two numerical methodologies, (simplified and rigorous) and one analytical are presented and compared, followed by an experimental verification; transversal soil-pipe interaction is examined through full-scale experimental testing, and comparisons of numerical simulations with rigorous finite element models are reported. Furthermore, the rigorous model is compared with the results from a special-purpose full-scale “landslide/fault” experimental test in order to examine the soil-pipe interaction in a complex loading conditions. Finally, the verified rigorous model is compared with both the simplified models and the analytical methodology.


Sign in / Sign up

Export Citation Format

Share Document