Fatigue Analysis of the Rail Underhead Radius under High Axle Load Conditions

2014 ◽  
Vol 891-892 ◽  
pp. 1181-1187 ◽  
Author(s):  
Sagheer Abbas Ranjha ◽  
Peter J. Mutton ◽  
Ajay Kapoor

An evaluation of the potential risk of fatigue damage at the rail underhead radius (UHR) due to the occurrence of a short duration tensile stress peak, as a wheel passes over, has been examined. The tensile stress peak is mainly due to the localised bending of the rail head-on-web and its magnitude is associated with the contact position, lateral and vertical forces and rail head wear (HW). The stresses at the underhead radius have been explored using the finite element method (FEM). The Dang Van (DV) criterion, implemented as a customised computer programme, was used to identify the fatigue damage at the UHR. Fatigue behaviour under heavy haul conditions was compared for heat-treated low alloy, euctectoid and hypereutectoid rail grades in order to predict allowable rail head wear limits.

2021 ◽  
Vol 11 (14) ◽  
pp. 6317
Author(s):  
Feng Jin ◽  
Hong Xiao ◽  
Mahantesh M Nadakatti ◽  
Huiting Yue ◽  
Wanting Liu

In this study, the rapid growth of corrugation caused by the bad quality of grinding works and their wavelength, depth, and evolution processes are captured through field measurements. The residual grinding marks left by poor grinding quality lead to further crack accumulation and corrugation deterioration by decreasing plastic resistance in rails. In this case, the average peak-to-peak values of corrugation grow extremely fast, reaching 1.4 μm per day. The finite element method (FEM) and fracture mechanics methodologies were used to analyze the development and trends in rail surface crack deterioration by considering rails with and without grinding marks. Crack propagation trends increase with residual grinding marks, and they are more severe in circular curve lines. To avoid the rapid deterioration of rail corrugation, intersections between grinding marks and fatigue cracks should be avoided.


2008 ◽  
Vol 141-143 ◽  
pp. 237-242 ◽  
Author(s):  
Mario Rosso ◽  
Ildiko Peter ◽  
R. Villa

The correlation between the evaluation of the mechanical and of the fatigue behaviour of the rheocast, T5 and T6 heat treated SSM A356 aluminium alloy with respect to the microstructures of the component has been investigated. The study has been carried out on a suspension arm injected in a rheocasting 800 tons plant in Stampal S.p.A. The new rheocasting is a process that allows obtaining the alloys in a semisolid state directly from the liquid state, by controlled cooling of the molten alloys. The resulting microstructures are very fine, free from defects and homogeneous: these characteristics improve the mechanical properties of the alloys and specially the response to cyclic stress, an important issue for a suspension component. After a preliminary tensile test analysis, axial high frequency fatigue tests have been carried out at room temperature on specimen cut out from the suspension arm to determine the Wöhler curve and the number of cycles to failure. The results of this work allow a comparison of the effects of heat treatment process, T5 or T6, on Semi-Solid components for industrial applications in the automotive field. On the basis of these analysis the correlation between microstructure and mechanical performances can be established.


Author(s):  
Fang Li ◽  
Liuxi Cai ◽  
Shun-sen Wang ◽  
Zhenping Feng

Abstract Finite element method (FEM) was used to study the stress peak of stress S11 (Radial stress component in X-axis) on the steam turbine blade surface of four typical erosion-resistant coatings (Fe2B, CrN, Cr3C2-NiCr and Al2O3-13%TiO2). The effect of four parameters, such as impact velocity, coating thickness, Young's modulus and Poisson's ratio on the stress peak of stress S11 were analyzed. Results show that: the position of tensile stress peak and compressive stress peak of stress S11 are far away from the impact center point with the increase of impact velocity. When coating thickness is equal to or greater than 10μm, the magnitude of tensile stress peak of stress S11 on the four coating surfaces does not change with the coating thickness at different impact velocities. When coating thickness is equal to or greater than 2μm, the magnitude of tensile stress peak of stress S11 of four coatings show a trend of increasing first and then decreasing with the increase of Young's modulus. Meanwhile, the larger the Poisson's ratio, the smaller the tensile stress peak of stress S11. After optimization, When coating thickness is 2μm, Poisson's ratio is 0.35 and Young's modulus is 800 GPa, the Fe2B coating has the strongest erosion resistance under the same impact conditions, followed by Cr3C2-NiCr, CrN, and the Al2O3- 13%TiO2 coating, Al2O3-13%TiO2 coating has the worst erosion resistance.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 847 ◽  
Author(s):  
Ryoichi Saito ◽  
Nao-Aki Noda ◽  
Yoshikazu Sano ◽  
Jian Song ◽  
Takeru Minami ◽  
...  

This paper deals with the roller chain commonly used for transmission of mechanical power on many kinds of industrial machinery, including conveyors, cars, motorcycles, bicycles, and so forth. It consists of a series of four components called a pin, a bush, a plate, and a roller, which are driven by a sprocket. To clarify the fatigue damage, in this paper, the finite element method (FEM) is applied to those components under three different types of states, that is, the press-fitting state, the static tensile state, and the sprocket-engaging state. By comparing those states, the stress amplitude and the average stress of each component are calculated and plotted on the fatigue limit diagram. The effect of the plastic zone on the fatigue strength is also discussed. The results show that the fatigue crack initiation may start around the middle inner surface of the bush. As am example, the FEM results show that the fatigue crack of the inner plate may start from a certain point at the hole edge. The results agree with the actual fractured position in roller chains used in industry.


2017 ◽  
Vol 22 (7) ◽  
pp. 2451-2463 ◽  
Author(s):  
Hazem Samih Mohamed ◽  
Fei Gao ◽  
Xing-Quan Guan ◽  
Hong Ping Zhu

2021 ◽  
Vol 55 (5) ◽  
pp. 179-195
Author(s):  
Luu Quang Hung ◽  
Zhuang Kang ◽  
Li Shaojie

Abstract In this paper, the dynamics of the flexible riser are investigated based on the absolute nodal coordinate formulation (ANCF). The stiffness, generalized elastic force, external load, and mass matrixes of the element are deduced based on the principle of energy conversion and assembled with the finite element method. The motion equation of the flexible riser is established. The influence of the environmental load conditions on the flexible riser model is studied in the MATLAB environment. Moreover, the accuracy and reliability of the programs are verified for a beam model with theoretical solutions. Finally, the static and dynamic characteristics of the flexible riser are analyzed, systematically adopting the ANCF method, which in turn proves the effectiveness and feasibility of the ANCF. Therefore, the proposed method is a powerful scheme for investigating the dynamics of flexible structures with large deformation in ocean engineering.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dragan D. Milašinović ◽  
Aleksandar Landović ◽  
Danica Goleš

PurposeThe purpose of this paper is to contribute to the solution of the fatigue damage problem of reinforced concrete frames in bending.Design/methodology/approachThe problem of fatigue damage is formulated based on the rheological–dynamical analogy, including a scalar damage variable to address the reduction of stiffness in strain softening. The modal analysis is used by the finite element method for the determination of modal parameters and resonance stability of the selected frame cross-section. The objectivity of the presented method is verified by numerical examples, predicting the ductility in bending of the frame whose basic mechanical properties were obtained by non-destructive testing systems.FindingsThe modal analysis in the frame of the finite element method is suitable for the determination of modal parameters and resonance stability of the selected frame cross-section. It is recommended that the modulus of elasticity be determined by non-destructive methods, e.g. from the acoustic response.Originality/valueThe paper presents a novel method of solving the ductility in bending taking into account both the creep coefficient and the aging coefficient. The rheological-dynamical analogy (RDA) method uses the resonant method to find material properties. The characterization of the structural damping via the damping ratio is original and effective.


Sign in / Sign up

Export Citation Format

Share Document