Implementations of PID Controller and its Transient Behaviour in Active Suspension System

2014 ◽  
Vol 895 ◽  
pp. 490-499 ◽  
Author(s):  
Noor Hafizah Amer ◽  
Rahizar Ramli ◽  
Wan Nor Liza Wan Mahadi ◽  
Mohd Azman Zainul Abidin ◽  
Zainab Rasol

Advancement in computational technologies has accelerated the research effort in exploring the possibility of semi-active and active suspension. Computational simulations were used widely in the studies of the controller strategies. Among them are PID controllers. Studies from previous work suggested that PID controllers are capable of improving ride comfort and road holding capability. However, very little emphasis is given to examine the whole state of the vehicle suspension system resulted from this implementation. Therefore this study will examine the application of a basic PID controller to an active suspension system (ASS) to determine the requirement of active force that should be delivered in stabilizing the whole system. Two different configurations of electromagnetic suspension system (EMS) will be considered. One variable in the vehicle system will be selected to be the controlled output of PID controller and its effect to overall vehicle state will be observed. In the cases that the PID was able to stabilize the body responses, deterioration was noticed in the wheel responses. While it stabilizes the controlled output, the active force from controller was channelled into deteriorating other vehicle parameters.

2013 ◽  
Vol 313-314 ◽  
pp. 382-386
Author(s):  
Wen Kui Lan ◽  
Er Dong Ni

A fuzzy-PID controller is developed and applied to the active suspension system for the ride comfort enhancement of a half-vehicle model. A four degree-of-freedom vehicle model with active suspension system is proposed, which focused on the passenger’s ride comfort performance, and a fuzzy-PID controller is developed by incorporating the fuzzy logic control mechanism into the modifications of the PID structure. The performance of the proposed controller has been verified by comparing it with passive control method in MATLAB/Simulink. The simulation results indicate that the developed fuzzy-PID controller enhances the ride comfort performance of the vehicle active suspension system by reducing the body acceleration and pitch angle significantly.


Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


Author(s):  
A.S. Emam ◽  
H. Metered ◽  
A.M. Abdel Ghany

In this paper, an optimal Fractional Order Proportional Integral Derivative (FOPID) controller is applied in vehicle active suspension system to improve the ride comfort and vehicle stability without consideration of the actuator. The optimal values of the five gains of FOPID controller to minimize the objective function are tuned using a Multi-Objective Genetic Algorithm (MOGA). A half vehicle suspension system is modelled mathematically as 6 degrees-of-freedom mechanical system and then simulated using Matlab/Simulink software. The performance of the active suspension with FOPID controller is compared with passive suspension system under bump road excitation to show the efficiency of the proposed controller. The simulation results show that the active suspension system using the FOPID controller can offer a significant enhancement of ride comfort and vehicle stability.


2010 ◽  
Vol 6 (2) ◽  
pp. 97-106
Author(s):  
A. Aldair ◽  
W. J. Wang

The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order PIλDμ (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function.


2011 ◽  
Vol 308-310 ◽  
pp. 2266-2270
Author(s):  
Mouleeswaran Senthilkumar

This paper describes the development of a controller design for the active control of suspension system, which improves the inherent tradeoff among ride comfort, suspension travel and road-holding ability. The developed design allows the suspension system to behave differently in different operating conditions, without compromising on road-holding ability. The effectiveness of this control method has been explained by data from time domains. Proportional-Integral-Derivative (PID) controller including hydraulic dynamics has been developed. The displacement of hydraulic actuator and spool valve is also considered. The Ziegler – Nichols tuning rules are used to determine proportional gain, reset rate and derivative time of PID controller. Simulink diagram of active suspension system is developed and analysed using MATLAB software. The investigations on the performance of the developed active suspension system are demonstrated through comparative simulations in this paper.


2008 ◽  
Vol 15 (5) ◽  
pp. 493-503 ◽  
Author(s):  
S. Hossein Sadati ◽  
Salar Malekzadeh ◽  
Masood Ghasemi

In this paper, an 8-DOF model including driver seat dynamics, subjected to random road disturbances is used in order to investigate the advantage of active over conventional passive suspension system. Force actuators are mounted parallel to the body suspensions and the driver seat suspension. An optimal control approach is taken in the active suspension used in the vehicle. The performance index for the optimal control design is a quantification of both ride comfort and road handling. To simulate the real road profile condition, stochastic inputs are applied. Due to practical limitations, not all the states of the system required for the state-feedback controller are measurable, and hence must be estimated with an observer. In this paper, to have the best estimation, an optimal Kalman observer is used. The simulation results indicate that an optimal observer-based controller causes both excellent ride comfort and road handling characteristics.


2011 ◽  
Vol 383-390 ◽  
pp. 2012-2017 ◽  
Author(s):  
Guo Quan Yang ◽  
You Qun Zhao

In this paper, a semi-active suspension system has been proposed to improve the ride comfort, and a 2 DOF vehicle system is designed to simulate the actions of vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. Based on MATLAB fuzzy control toolbox, fuzzy controller is designed. Simulation analysis of suspension system is preceded by using MATLAB/Simulink7.0. The result shows that this control can improve the body acceleration, suspension distortion etc.


Author(s):  
Alireza Rezaee ◽  
Mazyar Pajohesh

In this paper, fuzzy logic is used to control active suspension of one-quarter car model. The main role of a car suspension system is to improve the ride comfort and to better the handling property. It usually consists of a spring and a damper to improve the properties of suspension system. The fuzzy logic method is one of the most active research and developments areas on artificial and intelligence at the present time, particularly in the automobile industry. One quarter of car if modeled by springs, masses, dampers and force actuator and the state space equations are derived by lagrangian method. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbance from uneven road surfaces, pavement point etc. act on the tires of running car. Here, a logic fuzzy controller is designed in which, the number of rule bases are reduced in comparison with some traditional one which have been introduced in other papers. At the end, a comparison of active suspension fuzzy control and traditional passive suspension is shown using MATLAB simulations. Results show that, active suspension improves the ride comfort by reducing acceleration, compared with the performance of passive suspension.


2010 ◽  
Vol 39 ◽  
pp. 50-54 ◽  
Author(s):  
Shao Yi Bei ◽  
Jing Bo Zhao ◽  
Lan Chun Zhang ◽  
Shao Hua Liu

Using the multi-body simulation software SIMPACK as platform, a whole CHANGHE mini-car model was built. A fuzzy controller was adopted based on MATLAB/SIMULINK software to control the full car model. Pulse input running test simulation was carried out under co-simulation of SIMAT. The results showed that compared to passive suspension, with the speed 40km/h, the body vertical acceleration, body pitch angular velocity, standard deviation and peak were respectively decreased by 10.76%, 18.03% and 20.48%, 12.13%. The semi-active suspension system with fuzzy controller had better performance than passive suspension, reduced vibration effectively and improved automotive ride comfort.


Sign in / Sign up

Export Citation Format

Share Document