Application of Carbon Fiber-Based Composite for Electric Vehicle

2014 ◽  
Vol 896 ◽  
pp. 574-577 ◽  
Author(s):  
Miftahul Anwar ◽  
Indro Cahyono Sukmaji ◽  
Wisnu R. Wijang ◽  
Kuncoro Diharjo

In the present work, we study how to improve mechanical properties of carbon fiber reinforced plastics (CFRP) in order to increase crashworthiness probability. Experimentally, hybrid carbon /glass fiber composite was made in order to get higher mechanical properties. As a results, with increasing carbon fiber volume fraction (% vol.), tensile strength and flexural strength of the composite are increased. Simulation of impact testing is also performed using data properties taken from the experiment with variation of impact forces on front bumper structure. By varying external load to the bumper, the result shows that higher thickness of hybrid carbon/glass fiber composite has always smaller stress values than thinner one. On the other hand, the displacement of hybrid carbon/glass car bumper increases linearly with increasing external load.

2020 ◽  
Author(s):  
Anil kumar Thyagaraju ◽  
Chandan Venkatesh Achar ◽  
Chethan Ramakrishnaiah ◽  
Darshan Nagaraja ◽  
Kiran Timmannanapalya Shankar

2020 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Nhan Thi Thanh Nguyen ◽  
Obunai Kiyotaka ◽  
Okubo Kazuya ◽  
Fujii Toru ◽  
Shibata Ou ◽  
...  

In this research, three kinds of carbon fiber (CF) with lengths of 1, 3, and 25 mm were prepared for processing composite. The effect of submicron glass fiber addition (sGF) on mechanical properties of composites with different CF lengths was investigated and compared throughout static tests (i.e., bending, tensile, and impact), as well as the tension-tension fatigue test. The strengths of composites increased with the increase of CF length. However, there was a significant improvement when the fiber length changed from 1 to 3 mm. The mechanical performance of 3 and 25 mm was almost the same when having an equal volume fraction, except for the impact resistance. Comparing the static strengths when varying the sGF content, an improvement of bending strength was confirmed when sGF was added into 1 mm composite due to toughened matrix. However, when longer fiber was used and fiber concentration was high, mechanical properties of composite were almost dependent on the CF. Therefore, the modification effect of matrix due to sGF addition disappeared. In contrast to the static strengths, the fatigue durability of composites increased proportionally to the content of glass fiber in the matrix, regardless to CF length.


2016 ◽  
Author(s):  
Sukmaji Indro Cahyono ◽  
Angit Widodo ◽  
Miftahul Anwar ◽  
Kuncoro Diharjo ◽  
Teguh Triyono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document