A Column Generation Algorithm for High-Speed Railway Seat Inventory Control

2014 ◽  
Vol 919-921 ◽  
pp. 1055-1062
Author(s):  
Yuan Huang ◽  
He Song ◽  
Li Xia Tian

Huge investment in high-speed railway construction, whether its own operations economically rational, and how to develop a scientific and reasonable amount of high-speed rail ticket distribution scheme has become an important part of the high-speed rail operations optimization theory and applications. This paper gives a comprehensive consideration of economic and public services about the optimization model in order to maximize the expected revenue for the high-speed rail trains single objective function. Then proposed a heuristic column generation algorithm, compared to traditional linear programming methods, to a large extent reduce the number of iterations and computation time. Finally, we generate a random distribution of data to verify the algorithm can efficiently solve large-scale seat inventory control problems.

2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Li Wang ◽  
Yong Qin ◽  
Jie Xu ◽  
Limin Jia

A fuzzy optimization model based on improved symmetric tolerance approach is introduced, which allows for rescheduling high-speed railway timetable under unexpected interferences. The model nests different parameters of the soft constraints with uncertainty margin to describe their importance to the optimization purpose and treats the objective in the same manner. Thus a new optimal instrument is expected to achieve a new timetable subject to little slack of constraints. The section between Nanjing and Shanghai, which is the busiest, of Beijing-Shanghai high-speed rail line in China is used as the simulated measurement. The fuzzy optimization model provides an accurate approximation on train running time and headway time, and hence the results suggest that the number of seriously impacted trains and total delay time can be reduced significantly subject to little cost and risk.


Author(s):  
Vinay Sriram ◽  
David Kearney

High speed infrared (IR) scene simulation is used extensively in defense and homeland security to test sensitivity of IR cameras and accuracy of IR threat detection and tracking algorithms used commonly in IR missile approach warning systems (MAWS). A typical MAWS requires an input scene rate of over 100 scenes/second. Infrared scene simulations typically take 32 minutes to simulate a single IR scene that accounts for effects of atmospheric turbulence, refraction, optical blurring and charge-coupled device (CCD) camera electronic noise on a Pentium 4 (2.8GHz) dual core processor [7]. Thus, in IR scene simulation, the processing power of modern computers is a limiting factor. In this paper we report our research to accelerate IR scene simulation using high performance reconfigurable computing. We constructed a multi Field Programmable Gate Array (FPGA) hardware acceleration platform and accelerated a key computationally intensive IR algorithm over the hardware acceleration platform. We were successful in reducing the computation time of IR scene simulation by over 36%. This research acts as a unique case study for accelerating large scale defense simulations using a high performance multi-FPGA reconfigurable computer.


Author(s):  
Diana Khairallah ◽  
Olivier Chupin ◽  
Juliette Blanc ◽  
Pierre Hornych ◽  
Jean-Michel Piau ◽  
...  

The design and durability of high-speed railway lines is a major challenge in the field of railway transportation. In France, 40 years of feedback on the field behavior of ballasted tracks led to improvements in the design rules. However, the settlement and wear of ballast, caused by dynamic stresses at high frequencies, remains a major problem on high-speed tracks leading to high maintenance costs. Studies have shown that this settlement is linked to the high acceleration produced in the ballast layer by high-speed trains traveling on the track, disrupting the granular assembly. The “Bretagne–Pays de la Loire” high-speed line (BPL HSL), with its varied subgrade conditions, represents the first large-scale application of asphalt concrete (GB) as the ballast sublayer. This line includes 77 km of conventional track with a granular sublayer of unbound granular material (UGM) and 105 km of track with an asphalt concrete sublayer under the ballast. During construction, instruments such as accelerometers, anchored deflection sensors, and strain gages, among others, were installed on four sections of the track. This paper examines the instrumentation as well as the acquisition system installed on the track. The data processing is explained first, followed by a presentation of the ViscoRail software, developed for modeling railway tracks. The bituminous section’s behavior and response is modeled using a multilayer dynamic response model, implemented in the ViscoRail software. A good match between experimental and calculated results is highlighted.


Author(s):  
Yun Zhang ◽  
Lianhuan Wei ◽  
Jiayu Li ◽  
Shanjun Liu ◽  
Yachun Mao ◽  
...  

More and more high-speed railway are under construction in China. The slow settlement along high-speed railway tracks and newly-built stations would lead to inhomogeneous deformation of local area, and the accumulation may be a threat to the safe operation of high-speed rail system. In this paper, surface deformation of the newly-built high-speed railway station as well as the railway lines in Shenyang region will be retrieved by time series InSAR analysis using multi-orbit COSMO-SkyMed images. This paper focuses on the non-uniform subsidence caused by the changing of local environment along the railway. The accuracy of the settlement results can be verified by cross validation of the results obtained from two different orbits during the same period.


Author(s):  
Xudong Gao

China is a developing country but has made impressive progress in technological capability development. One strategy proved to be effective is the use of large-scale programs to help technological capability development. Examples include the subway equipment industry, the high-speed rail industry, the power generation equipment industry, the power transmission industry, the telecom equipment industry, etc. In all these sectors, China was lagging behind the technological innovation frontier before the related large-scale programs but is now among the world leaders. In this chapter we will try to understand the process of initiating and managing these large-scale programs.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Dingjun Chen ◽  
Sihan Li ◽  
Junjie Li ◽  
Shaoquan Ni ◽  
Xiaolong Liu

Timetable optimization techniques offer opportunity for saving energy and hence reducing operational costs for high-speed rail services. The existing energy-saving timetable optimization is mainly concentrated on the train running state adjustment and the running time redistribution between two stations. Not only the adjustment space of timetables is limited, but also it is hard for the train to reach the optimized running state in reality, and it is difficult to get feasible timetable with running time redistribution between two stations for energy-saving. This paper presents a high-speed railway energy-saving timetable based on stop schedule optimization. Under the constraints of safety interval and stop rate, with the objective of minimizing the increasing energy consumption of train stops and the shortest travel time of trains, the high-speed railway energy-saving timetable optimization model is established. The fuzzy mathematics programming method is used to design an efficient algorithm. The proposed model and algorithm are demonstrated in the actual operation data of Beijing-Shanghai high-speed railway. The results show that the total operating energy consumption of the train is reduced by 3.7%, and the total travel time of the train is reduced by 11 minutes.


2020 ◽  
Vol 12 (18) ◽  
pp. 7550
Author(s):  
Jiao Li ◽  
Yongsheng Qian ◽  
Junwei Zeng ◽  
Fan Yin ◽  
Leipeng Zhu ◽  
...  

By shortening the transportation time between cities, high-speed rail shortens the spatial distance between cities and exerts a far-reaching influence on urban agglomerations’ spatial structures. In order to explore the influence of high-speed rail on the spatial reconstruction of an urban agglomeration in western China, this paper employs fractal theory to compare and analyze the spatial structure evolution of the Chengdu–Chongqing urban agglomeration in western China before and after the opening of a high-speed railway. The results show that after the completion of the high-speed railway, the intercity accessibility is improved. The Chengdu–Chongqing urban agglomeration’s spatial distribution shows a decreasing density from the central city to the surrounding areas. Furthermore, the urban system presents a trend of an agglomeration distribution. Therefore, strengthening the construction of high-speed rail channels between primary and medium-sized cities, as well as accelerating the construction of intercity railway networks and rapid transportation systems based on high-speed rail cities, would help develop urban agglomerations in western China.


2019 ◽  
Vol 11 (7) ◽  
pp. 2141
Author(s):  
Xueqiao Yu ◽  
Maoxiang Lang ◽  
Wenhui Zhang ◽  
Shiqi Li ◽  
Mingyue Zhang ◽  
...  

The rapid and stable development of China’s economy has driven the increasing demand for express transportation. Based on network operation, China Railway Corporation of High-speed Railway launched high-speed rail products, which have attracted wide attention from all walks of life. With the application of high-speed express trains, the market structure of express transportation in China will change dramatically, from highways as the main mode of transportation to high-speed railway transportation relying on a high-speed railway network, which will effectively reduce the environmental pollution caused by express transportation and further improve the sustainable development of the economy and the logistics industry. At present, the freight Electric Multiple Units (EMU) has been successfully developed and has entered the final test stage. In the last paper, we have introduced the theory and method of the high-speed rail express train operation plan. In addition, a train diagram is an important foundation of railway transportation organization. In order to ensure the sustainable development of high-speed rail express trains after they are put into use, based on the operation plan of high-speed rail express trains, this paper establishes a comprehensive compilation model of a high-speed rail express train diagram, considering train running time, freight flow distribution scheme, and the operation plan of freight multiple units, and an exact solution algorithm based on the Lagrange relaxation algorithm is designed. The computational results are encouraging and demonstrate the effectiveness of the model and solution method.


Sign in / Sign up

Export Citation Format

Share Document