Laminar Convection Heat Transfer in Square Channel Fitted Diagonally with 45° V-Discrete Baffles

2014 ◽  
Vol 931-932 ◽  
pp. 1149-1153
Author(s):  
Sombat Tamna ◽  
Rachan Poonperm ◽  
Pongjet Promvonge ◽  
Chinaruk Thianpong

This work presents a numerical investigation of laminar periodic flow and heat transfer in a constant heat flux-surfaced square-channel fitted diagonally with 45° V-discrete baffles. The computations are based on the finite volume method, and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 200 to 1,200. Effects of different blockage ratios (BR=b/H), BR in range from 0.05-0.2 with pitch ratio of 1.0 on heat transfer and pressure loss in the channel are studied. It is apparent that vortex flows created by the 45° diagonal V-discrete baffle exist and help to induce impinging flows on wall leading to drastic increase in heat transfer rate over the smooth channel. In addition, the increase in the BR results in the rise of Nusselt number and friction factor values. The computational results reveal that the optimum thermal enhancement factor of the 45° V-discrete baffle is about 2.24 at BR=0.2.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Amnart Boonloi ◽  
Withada Jedsadaratanachai

Effects of flow attack angles of the V-wavy plate on flow and heat transfer in a square channel heat exchanger are investigated numerically. The V-wavy plates with V-tips pointing downstream and upstream called V-Downstream and V-Upstream, respectively, are examined for the Reynolds number in the range of 3000–10,000. The finite volume method with SIMPLE algorithm is selected to solve the present problem. The numerical results are presented in terms of flow and heat transfer visualization. The thermal performance analysis is also concluded in the form of Nusselt number ratio (Nu/Nu0), friction factor ratio (f/f0), and thermal enhancement factor (TEF). The numerical result shows that the wavy plate can induce the swirling flow through the test section for all cases. The swirling flow disturbs the thermal boundary layer on the channel wall which is the reason for heat transfer enhancement. In range studies, the heat transfer rate increases around 3–6.5 and 2.8–6 times above the smooth channel for V-Downstream and V-Upstream, respectively. The optimum TEF is found at α = 20° and Re = 3000 to be around 2.09 for V-Upstream case.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
N. A. Bakar ◽  
A. Karimipour ◽  
R. Roslan

The effect of magnetic field on fluid flow and heat transfer in two-dimensional square cavity is analyzed numerically. The vertical walls are insulated; the top wall is maintained at cold temperature, Tc while the bottom wall is maintained at hot temperature, Th where Th>Tc. The dimensionless governing equations are solved using finite volume method and SIMPLE algorithm. The streamlines and isotherm plots and the variation of Nusselt numbers on hot and cold walls are presented.


2014 ◽  
Vol 931-932 ◽  
pp. 1144-1148
Author(s):  
Supattarachai Suwannapan ◽  
Ratsak Poomsalood ◽  
Pongjet Promvonge ◽  
Withada Jedsadaratanachai ◽  
Thitipat Limkul

This research presents a numerical study of turbulent periodic flow and heat transfer in threedimensional isothermalfluxed square duct with diagonal inclined rib inserted. The fluid flow and heat transfer characteristics are presented for Reynolds numbers in the range of 4000 to 20,000. The computations based on the finite volume method, and the SIMPLE algorithm has been implemented. Effects of rib pitch ratios (0.5 to 2) at a single blockage ratio of 0.2 and attack angle of 60o on heat transfer and friction factor in the duct are examined and their results of the inclined rib are also compared with those of the smooth duct. It is found that the inclined rib provides higher heat transfer rate and friction factor than the smooth duct for all cases. In addition, the decreasing of the pitch ratio leads to the rise in the Nusselt number and friction factor.


10.30544/450 ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 71-86
Author(s):  
Kamel Korib ◽  
Mohamed ROUDANE ◽  
Yacine Khelili

In this paper, a numerical simulation has been performed to study the fluid flow and heat transfer around a rotating circular cylinder over low Reynolds numbers. Here, the Reynolds number is 200, and the values of rotation rates (α) are varied within the range of 0 < α < 6. Two-dimensional and unsteady mass continuity, momentum, and energy equations have been discretized using the finite volume method. SIMPLE algorithm has been applied for solving the pressure linked equations. The effect of rotation rates (α) on fluid flow and heat transfer were investigated numerically. Also, time-averaged (lift and drag coefficients and Nusselt number) results were obtained and compared with the literature data. A good agreement was obtained for both the local and averaged values.


2017 ◽  
Vol 9 (3) ◽  
pp. 698-721 ◽  
Author(s):  
V. P. M. Senthil Nayaki ◽  
S. Saravanan ◽  
X. D. Niu ◽  
P. Kandaswamy

AbstractAn investigation of natural convective flow and heat transfer inside a three dimensional rectangular cavity containing an array of discrete heat sources is carried out. The array consists of a row and columnwise regular arrangement of identical square shaped isoflux discrete heaters and is flush mounted on a vertical wall of the cavity. A symmetrical isothermal sink condition is maintained by cooling the cavity uniformly from either the opposite wall or the side walls or the top and bottom walls. The other walls of the cavity are maintained adiabatic. A finite volume method based on the SIMPLE algorithm and the power law scheme is used to solve the conservation equations. The parametric study covers the influence of pertinent parameters such as the Rayleigh number, the Prandtl number, side aspect ratio of the cavity and cavity heater ratio. A detailed fluid flow and heat transfer characteristics for the three cases are reported in terms of isothermal and velocity vector plots and Nusselt numbers. In general it is found that the overall heat transfer rate within the cavity for Ra=107 is maximum when the side aspect ratio of the cavity lies between 1.5 and 2. A more complex and peculiar flow pattern is observed in the presence of top and bottom cold walls which in turn introduces hot spots on the adiabatic walls. Their location and size are highly sensitive to the side aspect ratio of the cavity and hence offers more effective ways for passive heat removal.


2019 ◽  
Vol 29 (4) ◽  
pp. 1506-1525 ◽  
Author(s):  
Ahad Abedini ◽  
Saeed Emadoddin ◽  
Taher Armaghani

Purpose This study aims to investigate the numerical analysis of mixed convection within the horizontal annulus in the presence of water-based fluid with nanoparticles of aluminum oxide, copper, silver and titanium oxide. Numerical solution is performed using a finite-volume method based on the SIMPLE algorithm, and the discretization of the equations is generally of the second order. Inner and outer cylinders have a constant temperature, and the inner cylinder temperature is higher than the outer one. The two cylinders can be rotated in both directions at a constant angular velocity. The effect of parameters such as Rayleigh, Richardson, Reynolds and the volume fraction of nanoparticles on heat transfer and flow pattern are investigated. The results show that the heat transfer rate increases with the increase of the Rayleigh number, as well as by increasing the volume fraction of the nanoparticles, the heat transfer rate increases, and this increase is about 8.25 per cent for 5 per cent volumetric fraction. Rotation of the cylinders reduces the overall heat transfer. Different directions of rotation have a great influence on the flow pattern and isotherms, and ultimately on heat transfer. The addition of nanoparticles does not have much effect on the flow pattern and isotherms, but it is quantitatively effective. The extracted results are in good agreement with previous works. Design/methodology/approach Studying mixed convection heat transfer in the horizontal annulus in the presence of a water-based fluid with aluminum oxide, copper, silver and titanium oxide nanoparticles is carried out quantitatively using a finite-volume method based on the SIMPLE algorithm. Findings Increasing the Rayleigh number increases the Nusselt number. Increasing the Richardson number increases heat transfer. Adding nanoparticles does not have much effect on the flow pattern but is effective quantitatively on heat transfer parameters. The addition of nanoparticles sometimes increases the heat transfer rate by about 8.25 per cent. In constant Rayleigh numbers, increasing the Reynolds number reduces heat transfer. The Rayleigh and Reynolds numbers greatly affect the isotherms and streamlines. In addition to the thermal conductivity of nanoparticles, the thermo-physical properties of nanoparticles has great effect in the formation of isotherms and streamlines and ultimately heat transfer. Originality/value Studying the effect of different direction of rotation on the isotherms and streamlines, as well as the comparison of different nanoparticles on mixed convection heat transfer in annulus.


2018 ◽  
Vol 28 (8) ◽  
pp. 1774-1790 ◽  
Author(s):  
Jiaolin Wang ◽  
Ye Zhou ◽  
Qi-Hong Deng

Purpose The purpose of this study is to investigate the flow interaction between the cavities and its impact on heat transfer. The role of the openings is examined and three strategies are considered: one opening, two openings on single side and two openings on double sides. Design/methodology/approach A two-dimensional laminar natural convection heat transfer in multilayered open cavities was numerically investigated. The governing equations in primitive variables were discretized by the finite volume method and solved by SIMPLE algorithm. Findings The results show that for the cavities with one opening, the flow in the cavities is connected with each other. The exhaust hot fluid from the lower cavity was entrained into the upper cavities by thermal buoyancy and hence the heat transfer in the upper cavities was decreased because of thermal accumulation. Two openings on the single side could strengthen the flow interaction between the cavities and then enhance the heat transfer. However, the double-sided openings eliminated the flow interaction between the cavities and thus the fluid flow and heat transfer characteristics in all cavities are independent. It was concluded that the flow interaction between the multilayered open cavities has an importance effect on the heat transfer in the cavities. Originality/value The flow interaction between the multilayered open cavities was illustrated. The effect of flow interaction on the heat transfer in the cavities was investigated. The role of openings in the flow interaction and heat transfer in cavities was explored. The cavity below affects above cavity for the openings on single side. No interaction exists between the cavities with openings on double sides.


2019 ◽  
Vol 27 (1) ◽  
pp. 211-231
Author(s):  
Moayed R. Hasan ◽  
Suhad A. Rasheed ◽  
Ali Najeh Mahdi

This work presents experimental investigation of flow and heat transfer characteristics for entry length of turbulent flow in a rectangular duct fitted with porous media and air as the working fluid. Rectangular duct (300×30 mm) with a hydraulic diameter (54.54 mm) was subjected to constant heat flux from lower surface (1.5 ×102 –1.8 ×102 w/m2) and Reynolds number ranged (3.3x104 up to 4.8x104). Copper mesh inserts (as porous media) with screen diameter (54.5 mm) for vary distance between two adjacent screens of (10 mm), (15 mm) and (20 mm) in the porosity range of (0.98 - 0.99) are considered for experimentation. The effect of porous height ratio (full and partial) are also considered. It is observed that the enhancement of heat transfer by using mesh inserts when compared to a plain surface is more by a factor of (2.2) times where the skin fraction coefficient is about (5) times. An Empirical correlation for Nusselt number and friction factor are developed for the mesh inserts from the obtained results.


2012 ◽  
Vol 622-623 ◽  
pp. 628-632
Author(s):  
Amnart Boonloi ◽  
Withada Jedsadaratanachai ◽  
Pongjet Promvonge

This work deals with periodic flow, friction loss and heat transfer characteristics in a constant temperature-surfaced circular tube fitted with rib vortex generators (RVG). The computations are based on the finite volume method with the SIMPLE algorithm implemented. The fluid flow and heat transfer behaviors are presented for Reynolds numbers ranging from 100 to 1000. To generate two main vortex flows through the tested section, the 45o RVGs are mounted repeatedly in in-line arrangements on the top and bottom walls and in the central area of the tested section. Effects of different RVG heights, BR in a range from 0.1D to 0.3D with a single pitch of 1.5D on heat transfer and friction losses in the test section are examined. It is apparent that the vortex flows created by the RVG exist and help to induce periodically impinging flows on a sidewall leading to drastic increase in the heat transfer rate over the test section. The computational results reveal that the optimum thermal performance is about 2.38 for using the RVG height of 0.2D for the RVG placed on the tube walls at the highest Re value.


2019 ◽  
Vol 36 (1) ◽  
pp. 119-131 ◽  
Author(s):  
H. Amirat ◽  
A. Korichi

ABSTRACTNumerical simulations of convective fluid flow and heat transfer in a channel containing heated blocks with slot-jet behind the blocks are performed. The finite volume method with the simple algorithm is adopted and Ansys Fluent © CFD commercial code is used. The effect of slot-jet on flow structure and heat transfer modification is examined. The incidence of influent parameters such as slot-jet position, relative inlet slot-jet velocity and Reynolds number value has been explored. The results show that both the main inlet velocity as well as the relative slot-jet velocity in addition to the slot position modifies the flow field, temperature contours and heat transfer rate.


Sign in / Sign up

Export Citation Format

Share Document