3D Simulation on Flow Behavior and Heat Transfer in a Circular Tube with Inclined Different Arrangement of Thin Rib

2012 ◽  
Vol 622-623 ◽  
pp. 628-632
Author(s):  
Amnart Boonloi ◽  
Withada Jedsadaratanachai ◽  
Pongjet Promvonge

This work deals with periodic flow, friction loss and heat transfer characteristics in a constant temperature-surfaced circular tube fitted with rib vortex generators (RVG). The computations are based on the finite volume method with the SIMPLE algorithm implemented. The fluid flow and heat transfer behaviors are presented for Reynolds numbers ranging from 100 to 1000. To generate two main vortex flows through the tested section, the 45o RVGs are mounted repeatedly in in-line arrangements on the top and bottom walls and in the central area of the tested section. Effects of different RVG heights, BR in a range from 0.1D to 0.3D with a single pitch of 1.5D on heat transfer and friction losses in the test section are examined. It is apparent that the vortex flows created by the RVG exist and help to induce periodically impinging flows on a sidewall leading to drastic increase in the heat transfer rate over the test section. The computational results reveal that the optimum thermal performance is about 2.38 for using the RVG height of 0.2D for the RVG placed on the tube walls at the highest Re value.

2014 ◽  
Vol 931-932 ◽  
pp. 1149-1153
Author(s):  
Sombat Tamna ◽  
Rachan Poonperm ◽  
Pongjet Promvonge ◽  
Chinaruk Thianpong

This work presents a numerical investigation of laminar periodic flow and heat transfer in a constant heat flux-surfaced square-channel fitted diagonally with 45° V-discrete baffles. The computations are based on the finite volume method, and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 200 to 1,200. Effects of different blockage ratios (BR=b/H), BR in range from 0.05-0.2 with pitch ratio of 1.0 on heat transfer and pressure loss in the channel are studied. It is apparent that vortex flows created by the 45° diagonal V-discrete baffle exist and help to induce impinging flows on wall leading to drastic increase in heat transfer rate over the smooth channel. In addition, the increase in the BR results in the rise of Nusselt number and friction factor values. The computational results reveal that the optimum thermal enhancement factor of the 45° V-discrete baffle is about 2.24 at BR=0.2.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Lanja Refaat ◽  
Adnan Hussein

In this study, the heat transfer coefficient and pressure drop in a circular tube under turbulent flow condition are studied numerically. The Reynolds number range and nanoparticles concentration are in the range of (10000-30000) and 1% to 4% respectively. The governing equations have solved by the finite volume method adopting ANSYS software for simulation. The boundary conditions include: inlet velocity, outlet pressure and constant inlet temperature for hot and cold side and assuming SIMPLE algorithm. The results demonstrate that the AL2O3/Water nanofluid can enhance thermal properties of base fluid to 20% additionally, the heat transfer rate of nanofluid compared to the water is higher but friction factor slightly higher than that of pure water.


Author(s):  
Hamza Faraji ◽  
Mustapha Faraji ◽  
Mustapha El Alami

Abstract The present paper reports numerical results of the melting driven natural convection in an inclined rectangular enclosure filled with nano-enhanced phase change material (NePCM). The enclosure is heated from the bottom side by a flush-mounted heat source (microprocessor) that generates heat at a constant and uniform volumetric rate and mounted on a substrate (motherboard). All the walls are considered adiabatic. The purpose of the investigation is analyzing the effect of nanoparticles insertion by quantifying their contribution to the overall heat transfer. Combined effects of the PCM type, the inclination angle and the nanoparticles fraction on the structure of the fluid flow and heat transfer are investigated. A 2D mathematical model based on the conservation equations of mass, momentum, and energy was developed. The governing equations were integrated and discretized using the finite volume method. The SIMPLE algorithm was adopted for velocity–pressure coupling. The obtained results show that the nanoparticles insertion has an important quantitative effect on the overall heat transfer. The insertion of metallic nanoparticles with different concentrations affects the thermal behavior of the heat sink. They contribute to an efficient cooling of the heat source. The effect of nanoparticles insertion is also shown at the temperature distribution along the substrate.


2014 ◽  
Vol 354 ◽  
pp. 227-235
Author(s):  
Marcelo J.S. de Lemos

This article presents a thermo-mechanical approach to investigate heat transfer between solid and fluid phases in a model gasifier. A two-temperature equation approach is applied in addition to a macroscopic model for laminar flow through a porous moving bed. Transport equations are discretized using the control-volume method and the system of algebraic equations is relaxed via the SIMPLE algorithm. The effects on inter-phase heat transfer due to variation of medium permeability, thermal conductivity and thermal capacity are analyzed. Results indicate that for smaller medium permeabilities, as well as for higher solid-to-fluid thermal capacity and thermal conductivity ratios, enhancement of heat transfer between phases is observed.


Author(s):  
Md. Islam ◽  
A. Nurizki ◽  
A. Kareem ◽  
A. Baba

Various technologies have been developed to enhance the heat transfer. Vortex generator (VG) is one of the passive techniques which can change the flow behavior and ultimately enhances the heat transfer performance. Delta winglet (DW) vortex generator can create longitudinal and horseshoe vortices which do not decay until further downstream and consequently increase heat transfer coefficient with comparatively lower pressure drop. With this vortex generator, it is expected to have higher Nusselt number with some increase of friction factor. Therefore, this study is to study the effect of pitch ratio (PR) and attack angle (B) of DW vortex generator to increase the thermal performance of heat exchanger. Four delta winglets are attached into a ring. Those rings attached with VGs will be used to investigate the influence of different parameters to heat transfer performance. In this study VGs were placed inside a circular copper tube and the heating coil was wrapped up around the outer surface of the copper tube to generate a constant heat flux condition. The experimental setup consists of a blower, orifice meter, flow straightener, calm/flow developing section and test section. The results show the friction factor, Nusselt number, and Thermal Performance Enhancement. It increases the thermal performance due to the formation of longitudinal vortex inside the circular tube. Pitch ratio and attack angle seem to have significant impact on the flow and heat transfer. The Pitch ratio of 1.6 have the highest impact on both (f/f0) and (Nu/Nuo) followed by attack angle. Smoke flow visualization technique was used to study flow behavior and flow structures.


Author(s):  
Jae-Sang Baik ◽  
Youn-Jea Kim

Magnetron sputtering systems have been widely used in the field of thin film technologies, such as making ultra-thin semiconductors, metal films, etc. The feature of magnetron sputtering system is used high voltage and electric current as the power of system. The energy is converted to heat which must be removed by the appropriate cooling system. Otherwise, it may damage the target, the magnets, and the substrate as well. Also, the current trend of magnetron sputtering is towards that with larger size of target, which can improve the efficiency. Consequently, heat transfer of magnetron sputtering system becomes complex and needs to develop more efficient cooling system. The main parameters affecting the cooling performance are the flow path of cooling water and flow rate. In this study, we investigated the characteristics of cooling effect with various flow paths of cooling water and flow rates. Using a commercial code, FLUENT, which uses FVM (Finite Volume Method) and SIMPLE algorithm, the governing equations have been solved for the pressure, mass flow rate, and temperature distributions in the magnetron sputtering system.


2014 ◽  
Vol 931-932 ◽  
pp. 1144-1148
Author(s):  
Supattarachai Suwannapan ◽  
Ratsak Poomsalood ◽  
Pongjet Promvonge ◽  
Withada Jedsadaratanachai ◽  
Thitipat Limkul

This research presents a numerical study of turbulent periodic flow and heat transfer in threedimensional isothermalfluxed square duct with diagonal inclined rib inserted. The fluid flow and heat transfer characteristics are presented for Reynolds numbers in the range of 4000 to 20,000. The computations based on the finite volume method, and the SIMPLE algorithm has been implemented. Effects of rib pitch ratios (0.5 to 2) at a single blockage ratio of 0.2 and attack angle of 60o on heat transfer and friction factor in the duct are examined and their results of the inclined rib are also compared with those of the smooth duct. It is found that the inclined rib provides higher heat transfer rate and friction factor than the smooth duct for all cases. In addition, the decreasing of the pitch ratio leads to the rise in the Nusselt number and friction factor.


2006 ◽  
Vol 129 (3) ◽  
pp. 608-618 ◽  
Author(s):  
Hans-Jürgen Rehder ◽  
Axel Dannhauer

Within a European research project, the tip endwall region of low pressure turbine guide vanes with leakage ejection was investigated at DLR in Göttingen. For this purpose a new cascade wind tunnel with three large profiles in the test section and a contoured endwall was designed and built, representing 50% height of a real low pressure turbine stator and simulating the casing flow field of shrouded vanes. The effect of tip leakage flow was simulated by blowing air through a small leakage gap in the endwall just upstream of the vane leading edges. Engine relevant turbulence intensities were adjusted by an active turbulence generator mounted in the test section inlet plane. The experiments were performed with tangential and perpendicular leakage ejection and varying leakage mass flow rates up to 2%. Aerodynamic and thermodynamic measurement techniques were employed. Pressure distribution measurements provided information about the endwall and vane surface pressure field and its variation with leakage flow. Additionally streamline patterns (local shear stress directions) on the walls were detected by oil flow visualization. Downstream traverses with five-hole pyramid type probes allow a survey of the secondary flow behavior in the cascade exit plane. The flow field in the near endwall area downstream of the leakage gap and around the vane leading edges was investigated using a 2D particle image velocimetry system. In order to determine endwall heat transfer distributions, the wall temperatures were measured by an infrared camera system, while heat fluxes at the surfaces were generated with electric operating heating foils. It turned out from the experiments that distinct changes in the secondary flow behavior and endwall heat transfer occur mainly when the leakage mass flow rate is increased from 1% to 2%. Leakage ejection perpendicular to the main flow direction amplifies the secondary flow, in particular the horseshoe vortex, whereas tangential leakage ejection causes a significant reduction of this vortex system. For high leakage mass flow rates the boundary layer flow at the endwall is strongly affected and seems to be highly turbulent, resulting in entirely different heat transfer distributions.


2011 ◽  
Vol 354-355 ◽  
pp. 24-28 ◽  
Author(s):  
Chang Wei Jiang ◽  
Xian Feng Zhu ◽  
Er Shi ◽  
Zhen Zhou

Thermomagnetic convection of air in a porous cubic enclosure with a electric coil inclined around the Y axis is numerically investigated under zerogravity environment. The porous cubic enclosure is heated isothermally from left-hand side vertical wall and cooled isothermally from opposing wall while the other four walls are thermally insulated. The governing equations in primitive variables are discretized by the finite-volume method and solved by the SIMPLE algorithm. The results show that the overall heat transfer is enhanced gradually with the increase of magnetic force number and Darcy number. The resulted convection is symmetrical in terms of the angle at yeuler =0 when the range of inclination angle is from -90 to 90.


Sign in / Sign up

Export Citation Format

Share Document