The Relationship between Diurnal Temperature Range (DTR) and Rainfall over Northern Thailand

2014 ◽  
Vol 931-932 ◽  
pp. 614-618
Author(s):  
Lukas Beule ◽  
Sarintip Tantanee

Since 1950, it has been found that the global diurnal temperature range (DTR), the difference between the minimum temperature (Tmin) and the maximum temperature (Tmax) of daily surface air temperature, has been temporally decreasing in several places all over the world. The aim of this study is to investigate the effect of DTR on the amount of total monthly rainfall (TRF) and the number of rainy days per month (RD), as well as to evaluate the possibility of using DTR as a parameter in the rainfall prediction process. The study area is in northern Thailand, which covers about one third of the total area of the country. The impact of DTR on rainfall over the studied area is evaluated from the relationship between DTR and TRF, as well as DTR and RD, by using long-term meteorological monthly data over 30 years (1978-2007). Besides, the relationships of RD, TRF, and the temperature of mean monthly Tmax and Tmin are also analysed. The significance of the correlation between the two parameters is identified by the coefficient of correlation. The possibility of using DTR is evaluated by estimating the relationships between DTR and a one month-lag time of RD and TRF. It is found that the DTR has a strong statistically significant ( > 99%) negative correlation with TRF and RD, as well as with the one month-lag time of TRF and RD. Therefore, it is possible to consider DTR as a significant parameter for rainfall prediction.

2018 ◽  
Vol 25 (18) ◽  
pp. 17942-17949 ◽  
Author(s):  
Yuxia Ma ◽  
Yuxin Zhao ◽  
Jianding Zhou ◽  
Yunyan Jiang ◽  
Sixu Yang ◽  
...  

2012 ◽  
Vol 25 (20) ◽  
pp. 7216-7231 ◽  
Author(s):  
Ryan G. Lauritsen ◽  
Jeffrey C. Rogers

Abstract Long-term (1901–2002) diurnal temperature range (DTR) data are evaluated to examine their spatial and temporal variability across the United States; the early century origin of the DTR declines; and the relative regional contributions to DTR variability among cloud cover, precipitation, soil moisture, and atmosphere/ocean teleconnections. Rotated principal component analysis (RPCA) of the Climatic Research Unit (CRU) Time Series (TS) 2.1 dataset identifies five regions of unique spatial U.S. DTR variability. RPCA creates regional orthogonal indices of cloud cover, soil moisture, precipitation, and the teleconnections used subsequently in stepwise multiple linear regression to examine their regional impact on DTR, maximum temperature (Tmax), and minimum temperature (Tmin). The southwestern United States has the smallest DTR and cloud cover trends as both Tmax and Tmin increase over the century. The Tmin increases are the primary influence on DTR trend in other regions, except in the south-central United States, where downward Tmax trend largely affects its DTR decline. The Tmax and DTR tend to both exhibit simultaneous decadal variations during unusually wet and dry periods in response to cloud cover, soil moisture, and precipitation variability. The widely reported post-1950 DTR decline began regionally at various times ranging from around 1910 to the 1950s. Cloud cover alone accounts for up to 63.2% of regional annual DTR variability, with cloud cover trends driving DTR in northern states. Cloud cover, soil moisture, precipitation, and atmospheric/oceanic teleconnection indices account for up to 80.0% of regional variance over 1901–2002 (75.4% in detrended data), although the latter only account for small portions of this variability.


2012 ◽  
Vol 25 (3) ◽  
pp. 1022-1027 ◽  
Author(s):  
Kai Wang ◽  
Hong Ye ◽  
Feng Chen ◽  
Yongzhu Xiong ◽  
Cuiping Wang

Abstract Based on the 1960–2009 meteorological data from 559 stations across China, the urbanization effect on the diurnal temperature range (DTR) was evaluated in this study. Different roles of urbanization were specially detected under solar dimming and solar brightening. During the solar dimming time, both urban and rural stations showed decreasing trends in maximum temperature (Tmax) because of decreased radiation, suggesting that the dimming effects are not only evident in urban areas but also in rural areas. However, minimum temperature (Tmin) increased more substantially in urban areas than in rural areas during the dimming period, resulting in a greater decrease in the DTR in the urban areas. When the radiation reversed from dimming to brightening, the change in the DTR became different. The Tmax increased faster in rural areas, suggesting that the brightening could be much stronger in rural areas than in urban areas. Similar trends of Tmin between urban and rural areas appeared during the brightening period. The urban DTR continued to show a decreasing trend because of the urbanization effect, while the rural DTR presented an increasing trend. The remarkable DTR difference in the urban and rural areas showed a significant urbanization effect in the solar brightening time.


2019 ◽  
Vol 58 (6) ◽  
pp. 1369-1380 ◽  
Author(s):  
Ronald D. Leeper ◽  
John Kochendorfer ◽  
Timothy A. Henderson ◽  
Michael A. Palecki

AbstractA field experiment was performed in Oak Ridge, Tennessee, with four instrumented towers placed over grass at increasing distances (4, 30, 50, 124, and 300 m) from a built-up area. Stations were aligned in such a way to simulate the impact of small-scale encroachment on temperature observations. As expected, temperature observations were warmest for the site closest to the built environment with an average temperature difference of 0.31° and 0.24°C for aspirated and unaspirated sensors, respectively. Mean aspirated temperature differences were greater during the evening (0.47°C) than during the day (0.16°C). This was particularly true for evenings following greater daytime solar insolation (20+ MJ day−1) with surface winds from the direction of the built environment where mean differences exceeded 0.80°C. The impact of the built environment on air temperature diminished with distance with a warm bias only detectable out to tower B′ located 50 m away. The experimental findings were comparable to a known case of urban encroachment at a U.S. Climate Reference Network station in Kingston, Rhode Island. The experimental and operational results both lead to reductions in the diurnal temperature range of ~0.39°C for fan-aspirated sensors. Interestingly, the unaspirated sensor had a larger reduction in diurnal temperature range (DTR) of 0.48°C. These results suggest that small-scale urban encroachment within 50 m of a station can have important impacts on daily temperature extrema (maximum and minimum) with the magnitude of these differences dependent upon prevailing environmental conditions and sensing technology.


2021 ◽  
Vol 9 ◽  
Author(s):  
Min Guo ◽  
Minxuan Zhang ◽  
Hong Wang ◽  
Linlin Wang ◽  
Shuhong Liu ◽  
...  

Previous studies on the impact of urbanization on the diurnal temperature range (DTR) have mainly concentrated on the intra-seasonal and interannual–decadal scales, while relatively fewer studies have considered synoptic scales. In particular, the modulation of DTR by different synoptic weather patterns (SWPs) is not yet fully understood. Taking the urban agglomeration of the Yangtze River Delta region (YRDUA) in eastern China as an example, and by using random forest machine learning and objective weather classification methods, this paper analyzes the characteristics of DTR and its urban–rural differences (DTRU–R) in summer from 2013 to 2016, based on surface meteorological observations, satellite remote sensing, and reanalysis data. Ultimately, the influences of urbanization-related factors and different large-scale SWPs on DTR and DTRU–R are explored. Results show that YRDUA is controlled by four SWPs in the 850-hPa geopotential height field in summer, and the DTRs in three sub-regions are significantly different under the four SWPs, indicating that they play a role in regulating the DTR in YRDUA. In terms of the average DTR for each SWP, the southern sub-region of the YRDUA is the highest, followed by the northern sub-region, and the middle sub-region is the lowest, which is most significantly affected by high-level urbanization and high anthropogenic heat emission. The DTRU–R is negative and differs under the four different SWPs with variation in sunshine and rainfall. The difference in anthropogenic heat flux between urban and rural areas is one of the potentially important urbanization-related drivers for DTRU–R. Our findings help towards furthering our understanding of the response of DTR in urban agglomerations to different SWPs via the modulation of local meteorological conditions.


2017 ◽  
Vol 7 (6) ◽  
pp. 2171-2176 ◽  
Author(s):  
S. R. Samo ◽  
N. Bhatti ◽  
A. Saand ◽  
M. A. Keerio ◽  
D. K. Bangwar

Temperature and precipitation variations have a huge environmental, social and economic impact. This study aims to analyze the temporal variation of temperature and precipitation in Shaheed Benazir Abad district by using the linear regression method, the trend magnitude, the Mann-Kendall test and the Sen’s estimator of slope. The annual precipitation and monthly temperature data of Shaheed Benazir Abad for the period of 1996-2014 are considered. The result shows that the Diurnal temperature range of all months is decreasing due to the increasing of monthly minimum temperature at a faster rate than the monthly maximum temperature. However, the Diurnal temperature range of extreme events is increasing. The results obtained by using Mann-Kendall test revealed that rainfall exhibits significant positive trend. The trends of rainfall and rainy days show that the amount of rainfall is increasing much more rapidly than that of rainy days which indicates the occurrence of heavy events.


2022 ◽  
pp. 1-59

Abstract A review of many studies published since the late 1920s reveals that the main driving mechanisms responsible for the Early Twentieth Century Arctic Warming (ETCAW) are not fully recognized. The main obstacle seems to be our limited knowledge about the climate of this period and some forcings. A deeper knowledge based on greater spatial and temporal resolution data is needed. The article provides new (or improved) knowledge about surface air temperature (SAT) conditions (including their extreme states) in the Arctic during the ETCAW. Daily and sub-daily data have been used (mean daily air temperature, maximum and minimum daily temperature, and diurnal temperature range). These were taken from ten individual years (selected from the period 1934–50) for six meteorological stations representing parts of five Arctic climatic regions. Standard SAT characteristics were analyzed (monthly, seasonal, and yearly means), as were rarely investigated aspects of SAT characteristics (e.g., number of characteristic days; day-to-day temperature variability; and onset, end, and duration of thermal seasons). The results were compared with analogical calculations done for data taken from the Contemporary Arctic Warming (CAW) period (2007–16). The Arctic experienced warming between the ETCAW and the CAW. The magnitude of warming was greatest in the Pacific (2.7 °C) and Canadian Arctic (1.9 °C) regions. A shortening of winter and lengthening of summer were registered. Furthermore, the climate was also a little more continental (except the Russian Arctic) and less stable (greater day-to-day variability and diurnal temperature range) during the ETCAW than during the CAW.


2020 ◽  
Vol 78 (1) ◽  
pp. 62-68
Author(s):  
Anna Ponjoan ◽  
Jordi Blanch ◽  
Lia Alves-Cabratosa ◽  
Ruth Martí Lluch ◽  
Marc Comas-Cufí ◽  
...  

ObjectivesThe impact of extreme diurnal temperature range (DTR) on cardiovascular morbidity in Mediterranean regions remains uncertain. We aimed to analyse the impact of extreme low DTR (stable temperature) or high DTR (changeable temperature) on cardiovascular hospitalisations in Catalonia (Southern Europe).MethodsWe conducted a self-controlled case series study using whole-year data from the System for the Development of Research in Primary Care database and 153 weather stations from the Catalan Meteorological Service. The outcome was first emergency hospitalisation. Monthly DTR percentiles were used to define extreme DTR as low (DTR <the 5th percentile) and high (DTR>95th percentile). We assessed two effects: same-day (1-day exposure, coinciding with the extreme DTR episode) and cumulative (3-day exposure, adding two subsequent days). Incidence rate ratios (IRR) were calculated adjusted by age, season and air pollution. Stratified analyses by gender, age or cardiovascular type and regions are provided.ResultsWe computed 121 206 cardiovascular hospitalisations from 2006 to 2013. The IRR was 1.032 (95% CI 1.005 to 1.061) for same day and 1.024 (95% CI 1.006 to 1.042) for cumulative effects of extreme high DTR. The impact was significant for stroke and heart failure, but not for coronary heart disease. Conversely, extreme low DTR did not increase cardiovascular hospitalisations.ConclusionsExtreme high DTR increased the incidence of cardiovascular hospitalisations, but not extreme low DTR. Same-day effects of extreme high DTR were stronger than cumulative effects. These findings contribute to better understand the impact of outdoor temperature on health, and to help defining public health strategies to mitigate such impact.


Sign in / Sign up

Export Citation Format

Share Document