Study on Thermal Conductivity of Multilayer Graphene/NR Composite

2014 ◽  
Vol 933 ◽  
pp. 3-7 ◽  
Author(s):  
Gui Long Wu ◽  
Long Liu ◽  
Xiao Zong ◽  
Yan He ◽  
Ze Peng Wang

Graphene/NR composite was prepared in emulsion blending and the multilayer graphene was about 4-8 layers. Different mass fraction of this kind of graphene was mixed into NR in this work.The thermal conductivity of this compositive system was respected to be improved apparently since the high thermal conductivity of graphene. In this work, TEM(Transmission electron microscope) was used to observe the structure and morphology of the multilayer graphene. NETZSCH LFA was used to research the change of thermal conductivity with the fraction of grahene changing. DSC(differential scanning calorimetry) was used to research the structure change in the series of composites. The TEM results showed that the graphene we used is 4-5 layers. LFA had proved that the multilayer graphene has affected the thermal conductivity of matrix greatly and DSC also provided evidence to support the same views.

2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


2017 ◽  
Vol 268 ◽  
pp. 172-176 ◽  
Author(s):  
Nurul Norfarina Hasbullah ◽  
Oon Jew Lee ◽  
Josephine Liew Ying Chyi ◽  
Soo Kien Chen ◽  
Zainal Abidin Talib

In this work, BaTiO3 nanoparticles were synthesized through hydrothermal method. The powder obtained from the hydrothermal process (as-synthesized powder) was calcined at 1000 °C. The phase formation and morphology of the as-synthesized and calcined powders were studied using X-ray diffraction (XRD), thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyzer, and transmission electron microscope (TEM). The XRD data showed that the as-synthesized powder is partially amorphous. Upon calcining the powder at 1000 °C, highly crystalline BaTiO3 with tetragonal structure was obtained. As shown by TGA and DSC analysis, the precursor powder was completely transformed into BaTiO3 at 1000 °C. The presence of BaCO3 as an impurity phase in the powder is due to the lack of Ba2+ / Ti3+/4+. Transmission electron microscope images showed that the particle size of the as-synthesized powder increased after calcination due to crystal growth. In addition, nanocubes with the average size of around 11.66 nm were obtained as a result of the calcination compared to the ellipsoid like particles of the as-synthesized powder.


2011 ◽  
Vol 299-300 ◽  
pp. 584-587 ◽  
Author(s):  
Ying Chun Zhou ◽  
Qi Jian Zhang

The amorphous Fe78Si9B13 alloy was treated by low frequency pulse magnetic field (LFPMF). The microstructure was observed by Mössbauer spectroscopy and Transmission Electron Microscope. The activation energy of nanocrystallization of amorphous alloy Fe78Si9B13 treated by low frequency pulse magnetic field was determined by differential scanning calorimetry (DSC). The results indicated that the activation energy was decreased from 433.6kJ.mol-1 to less than 200kJ.mol-1 after LFPMF. The nucleating rate of α-Fe(Si) was increased and there was only single phase α-Fe(Si) crystalline formed.


2010 ◽  
Vol 148-149 ◽  
pp. 385-388
Author(s):  
Xiao Zhen Hua ◽  
Xin Yuan Peng ◽  
Xian Liang Zhou ◽  
Qing Jun Chen

Effects of hydrogen on machinability involving cutting force, surface roughness and chips morphology of BT25y alloy with semi finish machining were carried out. The microstructures and phase composition of different concentrations were studyed by metallurgical microscopy, transmission electron microscope (TEM), and X-ray diffractions (XRD). The results show that existing a optimum hydrogen concentration (0.20wt.%) for machinability of BT25y alloy in which cutting force decreases 179N and surface roughness reduces about 24%, in addition, chips morphology are transferred from continuous to segmental. The grain refinement, hydride precipitations and thermal conductivity resulting from hydrogen can improve the machinability of BT25y alloy.


Author(s):  
R. A. Waugh ◽  
J. R. Sommer

Cardiac sarcoplasmic reticulum (SR) is a complex system of intracellular tubules that, due to their small size and juxtaposition to such electron-dense structures as mitochondria and myofibrils, are often inconspicuous in conventionally prepared electron microscopic material. This study reports a method with which the SR is selectively “stained” which facilitates visualizationwith the transmission electron microscope.


Author(s):  
Sanford H. Vernick ◽  
Anastasios Tousimis ◽  
Victor Sprague

Recent electron microscope studies have greatly expanded our knowledge of the structure of the Microsporida, particularly of the developing and mature spore. Since these studies involved mainly sectioned material, they have revealed much internal detail of the spores but relatively little surface detail. This report concerns observations on the spore surface by means of the transmission electron microscope.


Author(s):  
H. Tochigi ◽  
H. Uchida ◽  
S. Shirai ◽  
K. Akashi ◽  
D. J. Evins ◽  
...  

A New High Excitation Objective Lens (Second-Zone Objective Lens) was discussed at Twenty-Sixth Annual EMSA Meeting. A new commercially available Transmission Electron Microscope incorporating this new lens has been completed.Major advantages of the new instrument allow an extremely small beam to be produced on the specimen plane which minimizes specimen beam damages, reduces contamination and drift.


Author(s):  
G. Cliff ◽  
M.J. Nasir ◽  
G.W. Lorimer ◽  
N. Ridley

In a specimen which is transmission thin to 100 kV electrons - a sample in which X-ray absorption is so insignificant that it can be neglected and where fluorescence effects can generally be ignored (1,2) - a ratio of characteristic X-ray intensities, I1/I2 can be converted into a weight fraction ratio, C1/C2, using the equationwhere k12 is, at a given voltage, a constant independent of composition or thickness, k12 values can be determined experimentally from thin standards (3) or calculated (4,6). Both experimental and calculated k12 values have been obtained for K(11<Z>19),kα(Z>19) and some Lα radiation (3,6) at 100 kV. The object of the present series of experiments was to experimentally determine k12 values at voltages between 200 and 1000 kV and to compare these with calculated values.The experiments were carried out on an AEI-EM7 HVEM fitted with an energy dispersive X-ray detector.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Author(s):  
J.N. Chapman ◽  
P.E. Batson ◽  
E.M. Waddell ◽  
R.P. Ferrier

By far the most commonly used mode of Lorentz microscopy in the examination of ferromagnetic thin films is the Fresnel or defocus mode. Use of this mode in the conventional transmission electron microscope (CTEM) is straightforward and immediately reveals the existence of all domain walls present. However, if such quantitative information as the domain wall profile is required, the technique suffers from several disadvantages. These include the inability to directly observe fine image detail on the viewing screen because of the stringent illumination coherence requirements, the difficulty of accurately translating part of a photographic plate into quantitative electron intensity data, and, perhaps most severe, the difficulty of interpreting this data. One solution to the first-named problem is to use a CTEM equipped with a field emission gun (FEG) (Inoue, Harada and Yamamoto 1977) whilst a second is to use the equivalent mode of image formation in a scanning transmission electron microscope (STEM) (Chapman, Batson, Waddell, Ferrier and Craven 1977), a technique which largely overcomes the second-named problem as well.


Sign in / Sign up

Export Citation Format

Share Document