Effect of H3BO3 Additive and Forming Pressure on Microwave Dielectric Properties of 0.95MgTiO3-0.05CaTiO3

2014 ◽  
Vol 941-944 ◽  
pp. 521-524
Author(s):  
Jin Bao Huang ◽  
Yi Xiang Cai ◽  
Zhao Xian Xiong ◽  
Hao Xue

0.95MgTiO3-0.05CaTiO3 (95MCT) microwave dielectric ceramics was prepared solid-state reaction method. Effect of H3BO3 additive and forming pressure on sintering process, microstructure and microwave dielectric properties of 95MCT were investigated. The result showed that the additive of H3BO3 can lower the sintering temperature of 95MCT, and improve the densification of 95MCT. MgTi2O5 was found as mesosphere, which can be effectively suppressed through the additive of H3BO3. Excellent microwave dielectric properties of ceramics was obtained when the H3BO3 additive was 0.50wt%. The best value of dielectric constant (εr), quality factor (Q×f) and temperature coefficient of resonant frequency (τf ) of 21.54, 67,286GHz and-4.1ppm/oC was obtained for the ceramics with sintering 1220oC for 2h.

2011 ◽  
Vol 239-242 ◽  
pp. 77-80 ◽  
Author(s):  
Ji Hong Liao ◽  
Ying Dai ◽  
Ren Zhou Yang ◽  
Wen Chen

Low-temperature sintered Ca[(Li1/3Nb2/3)0.8Ti0.2]O3-δ (CLNT) microwave dielectric ceramics with V2O5 and ZnO additives were prepared by the conventional solid state reaction method. The sintering behavior and microwave dielectric properties of CLNT ceramics were investigated. The main diffraction peaks of all the specimens sintered at the temperature under 1150◦C split due to the coexistence of the non-stoichiometric phase and stoichiometric phase, which all possess CaTiO3-type perovskite structures. ZnO and V2O5 combined additives lowered the sintering temperature of CLNT ceramics from 1150◦C to 1090◦C. and the Qf values were improved from 18,210 GHz to 20,740 GHz. The CLNT ceramics with 4 wt% ZnO addition sintered at 1090◦C showed good microwave dielectric properties with εr ~39.7, Qf ~20,740 GHz, τf ~8.6 ppm/◦C. The relationship between dielectric properties and the sintering behavior was also discussed.


2012 ◽  
Vol 512-515 ◽  
pp. 1198-1202
Author(s):  
Jia Mao Li ◽  
Tai Qiu

Microstructures and microwave dielectric properties of Ca(Sm0.5Nb0.5)O3 ceramics, prepared by a conventional solid-state reaction method, were systematically investigated by varying calcining temperature, sintering temperature and cooling rate. The XRD result showed that a single Ca(Sm0.5Nb0.5)O3 phase could be synthesized at a calcining temperature of 1200 °C. Optimized combination of microwave dielectric properties of εr = 22.36, Q×f = 18030 GHz and τf = -31.2 ppm/°C was obtained for furnace-cooled Ca(Sm0.5Nb0.5)O3 ceramics sintered at 1550 °C for 4 h. However, some microcracks were found from the microstructures of the furnace-cooled specimens. Further, the Q×f value could be increased by controlling the cooling rate during the sintering process due to the disappearance of microcracks in the final material. With a cooling rate of 2 °C/min, Ca(Sm0.5Nb0.5)O3ceramics exhibited an enhanced Q×f value of 37130 GHz.


2018 ◽  
Vol 281 ◽  
pp. 585-590
Author(s):  
Zhe Fei Wang ◽  
Chen Yao Zhai ◽  
Xu Hong Wang

Ba(Co1/3(Nb1-xW5x/6)2/3)O3 (0<x≤0.05) (BCWN) microwave dielectric ceramics have been prepared by solid-state reaction method. The microstructure and microwave dielectric properties of BCWN ceramics were investigated systematically in this paper. The results show that the sintering temperature decreases with the substitution of W6+. The Ba(Co1/3(Nb1-xW5x/6)2/3)O3 solid solution is formed with the small substitution of W6+ (x≤0.01). With the increase of x, the impurity phase BaWO4 occurrs and the grains become less homogeneous. Combined with the analysis of X-Ray Diffraction, the cation ordering degree on B-site increases in the sample of x=0.01, which leads to the decrease of the dielectric loss. However, the second phase BaWO4 inhibits the formation of the ordered structure with the reduction of sinterability. Due to the formation of BaWO4, the values of εr and τf of all samples decrease subsequently. The optimized microwave dielectric properties of Ba(Co1/3(Nb1-xW5x/6)2/3)O3 ceramics were obtained in the samples of x=0.01: εr=33.8, Q×f =110761 GHz, τf = -17 ppm/°C.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 438
Author(s):  
Shuwei Yang ◽  
Bingliang Liang ◽  
Changhong Liu ◽  
Jin Liu ◽  
Caisheng Fang ◽  
...  

The (1–x)Ca0.61La0.26TiO3-xNd(Mg0.5Ti0.5)O3 [(1–x)CLT-xNMT, x = 0.35~0.60] ceramics were prepared via microwave sintering. The effects of sintering temperature and composition on the phase formation, microstructure, and microwave dielectric properties were investigated. The results show that the microwave sintering process requires a lower sintering temperature and shorter sintering time of (1–x)CLT-xNMT ceramics than conventional heating methods. All of the (1–x)CLT-xNMT ceramics possess a single perovskite structure. With the increase of x, the dielectric constant (ε) shows a downward trend; the quality factor (Qf) drops first and then rises significantly; the resonance frequency temperature coefficient (τf) keeps decreasing. With excellent microwave dielectric properties (ε = 51.3, Qf = 13,852 GHz, τf = −1.9 × 10−6/°C), the 0.65CLT-0.35NMT ceramic can be applied to the field of mobile communications.


2011 ◽  
Vol 326 ◽  
pp. 127-130
Author(s):  
Xian Li Huang ◽  
Fu Ping Wang ◽  
Ying Song

In the present work, the microstructure and microwave dielectric properties of BaTi4O9 ceramics derived from a sol-gel precursor were presented. Density measuring results demonstrated that the largest densities of ceramic sample about 96.7% could be reached by virtue of a cool iso-static press and a sintering process at at 1300 °C for 6 hours. The dielectric constant (εr), quality factor (Q×f) and the temperature coefficients (τf) of the BaTi4O9 ceramic samples were 36.65, 28000 GHz, +20.2 ppm/°C, respectively. XRD, SEM and XPS were used to characterize the microstructure of the ceramics samples. Substantial Ti3+ was proposed to be the cause of dielectric loss.


2011 ◽  
Vol 284-286 ◽  
pp. 1442-1446
Author(s):  
Yue Ming Li ◽  
Zong Yang Shen ◽  
Zhu Mei Wang ◽  
Hua Zhang ◽  
Yan Hong ◽  
...  

The B2O3-CuO oxide mixture (abbreviated as BC) was selected to lower the sintering temperature of (Ca0.9375Sr0.0625)0.25(Li0.5Sm0.5)0.75TiO3 (abbreviated as CSLST) microwave dielectric ceramics by solid sate reaction technique. The effects of BC doping amounts on the crystal structure, microstructure and microwave dielectric properties of the ceramics were investigated. For the ceramic sample with the composition of CSLST + 5 wt% BC, its sintering temperature was reduced to 1000 °C as compared to 1200 °C for pure CSLST. In addition to the obtained good microwave dielectric properties as follows: εr = 80.4, Q×f = 1380 GHz, τf = -32.89 ×10-6/°C, this ceramic was a desirable high-permittivity microwave dielectric candidate for low-temperature cofired ceramic (LTCC) applications.


2010 ◽  
Vol 663-665 ◽  
pp. 1028-1031
Author(s):  
Yue Ming Li ◽  
Hua Zhang ◽  
Zhu Mei Wang ◽  
Yan Hong ◽  
Zong Yang Shen

The sintering behavior and microwave dielectric properties of the (Ca0.9375Sr0.0625)0.25(Li0.5Sm0.5)0.75TiO3 (CSLST) ceramics doped with different amounts of Li2O-B2O3-SiO2-CaO-Al2O3 (LBSCA) glass were investigated. The sintering temperature of the CSLST ceramics can be effectively reduced over 200oC due to the addition of LBSCA glass. For the 5 wt% LBSCA-doped CSLST ceramics, which are sintered at only 1000 oC for 5 h, show optimum microwave dielectric properties as follows: εr=84.74, Qf=2446 GHz and τf=-12.48 ppm/oC.


2010 ◽  
Vol 434-435 ◽  
pp. 224-227
Author(s):  
Xu Ping Lin ◽  
Jing Tao Ma ◽  
Bao Qing Zhang ◽  
Ji Zhou

The influence of CuO-V2O5-Bi2O3 addition on the sintering behavior, phase composition, microstructure and microwave dielectric properties of Zn3Nb2O8 ceramics were investigated. The co- doping of CuO, V2O5 and Bi2O3 can significantly lower the sintering temperature of Zn3Nb2O8 ceramics from 1150°C to 900°C. The Zn3Nb2O8-0.5wt% CuO-0.5wt% V2O5-2.0wt% Bi2O3 ceramic sintered at 900°C showed a relative density of 97.1%, a dielectric constant (εr) of 18.2, and a quality factor (Q×f) of 36781 GHz. The dielectric properties in this system exhibited a significant dependence on the relative density, content of additives and sintering temperature. The relative density and dielectric constant (εr) of Zn3Nb2O8 ceramics increased with increasing CuO-V2O5-Bi2O3 additions. And also the relative density and dielectric constant of Zn3Nb2O8 ceramics increased by the augment of the sintering temperature.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4187 ◽  
Author(s):  
Min-Hang Weng ◽  
Chihng-Tsung Liauh ◽  
Shueei-Muh Lin ◽  
Hung-Hsiang Wang ◽  
Ru-Yuan Yang

The effect of CuO/B2O3 additions on the sintering behaviors, microstructures, and microwave dielectric properties of 0.95LaAlO3–0.05CaTiO3 ceramics is investigated. It is found that the sintering temperatures are lowered efficiently from 1600 °C to 1350 °C, as 1 wt % CuO, 1 wt % B2O3, and 0.5 wt % CuO +0.5 wt % B2O3 are used as the sintering aids due to the appearance of the liquid phase sintering. The microwave dielectric properties of 0.95LaAlO3–0.05CaTiO3 ceramics with the sintering aid additions are strongly related to the densification and the microstructure of the sintered ceramics. At the sintering temperature of 1300 °C, the 0.95LaAlO3–0.05CaTiO3 ceramic with 0.5 wt % CuO + 0.5 wt % B2O3 addition shows the best dielectric properties, including a dielectric constant (εr) of 21, approximate quality factor (Q × f) of 22,500 GHz, and a temperature coefficient of the resonant frequency (τf) of −3 ppm/°C.


2010 ◽  
Vol 660-661 ◽  
pp. 646-651
Author(s):  
José Vitor C. Souza ◽  
Pedro José Castro ◽  
Maria do Carmo de Andrade Nono ◽  
Sergio Luiz Mineiro

Dielectric ceramics have been widely investigated and used for microwave applications such as resonators and filters. The present study deals with the influence of sintering temperature on microwave dielectric properties of TiO2 ceramics with 10, 20, and 30 wt% ZrO2. Three compositions have been developed through mixing procedures and then tested for each sintering temperature: 1500 and 1400 °C. X-ray diffraction and scanning electron microscopy are carried out aiming to explain the ceramic behavior of each sample. The dielectric constants of different ceramics for both temperatures varied from 85.4 to 62.6, while their quality factor due to dielectric losses varied from 3110 to 1630. The Q decrease is attributed to the non uniform grain growth and to the obtained crystalline phases. The best microwave parameters were obtained for the ceramics sintered at 1400 °C, which can be applied in microwave circuits as dielectric resonators.


Sign in / Sign up

Export Citation Format

Share Document