Finite Element Analysis of Dynamic Splitting Tensile Mechanical Properties of Reinforced Concrete

2014 ◽  
Vol 941-944 ◽  
pp. 695-700
Author(s):  
Xiao Yan Song ◽  
Pei Wen Zhang

Finite element analysis is carried out on the dynamic splitting tensile mechanical properties of reinforced concrete with LS-DYNA. The impact of strain rate and reinforcement ratio on the dynamic tensile strength and failure mode of reinforced concrete is considered in the calculation. The result shows that the form of reinforcement and reinforcement ratio has a greater impact on the failure mode and tensile strength of concrete. The dynamic splitting tensile strength of reinforced concrete has a certain strain rate effect and its splitting tensile strength increases with the strain rate; the splitting tensile strength of reinforced concrete also increases with its reinforcement ratio.

2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2020 ◽  
Vol 27 (3) ◽  
pp. 121-129
Author(s):  
Yao Zilin ◽  
Wang Yu ◽  
Yang Xuefeng ◽  
Gao Anping ◽  
Zhang Rong ◽  
...  

AbstractDue to the complexity of the marine environment, in deep-sea drilling, all kinds of strings are corroded by different deep-sea conditions for a long time, accompanied by high temperature and high pressure, which lead to the continuous change of mechanical properties of materials. In order to solve the problem that the material mechanical parameters cannot be accurately described in the performance analysis of the casing, deep-sea simulated corrosion and material damage experiments of P110 material were carried out in this paper. Mass loss and tensile experiments on corrosion-damaged test pieces were conducted under different corrosion experimental periods. The changes in mechanical properties of the material were analyzed. Equations of the variation of the equivalent yield strength and the equivalent tensile strength were obtained. The results show that the equivalent yield strength and the equivalent tensile strength decrease with the increase of the weight loss rate. Based on the experimental results and finite element analysis, a method for establishing the material corrosion model was proposed in this paper. The deep-sea drilling corrosion performance model of P110 material was established, which greatly reduced the error caused by the material uniformity assumption in finite element analysis. This paper provides a theoretical basis for the analysis of reliability and life of P110 materials in wells.


2013 ◽  
Vol 838-841 ◽  
pp. 53-56
Author(s):  
Yun Tao Zhang

The finite element software ANSYS/CivilFEM was applied to analyses the influence of steel bar restraint on creep and shrinkage of reinforced concrete. The analysis results are in good agreement with the experiment results. When the reinforcement ratio is low, the steel bar exerts less influence on creep and shrinkage, and the influence of steel bar can be neglected in engineering application. However, the reinforcement can effectively reduce creep and shrinkage development when the reinforcement ratio is high.


Sign in / Sign up

Export Citation Format

Share Document