Charging and Discharging Control Strategy of Electric Vehicles Based on V2G Mode

2014 ◽  
Vol 953-954 ◽  
pp. 1413-1417
Author(s):  
Li Juan Tan ◽  
Cai Hong Zhao ◽  
Mai Zhang ◽  
Li Liu ◽  
Han Yi Li ◽  
...  

With the popularity of electric vehicles, the impact of charging power on the original grid load is increasingly prominent. Electric vehicles can realize the benign interaction with power grid through the V2G technology. The mathematical model is solved with genetic algorithm in this paper based on the objective function as the minimization of daily charging cost. Constraint conditions such as maximum charge and discharge power limits and state of charge are considered. By analyzing the charge and discharge control of single car and the influence of electric vehicles’ charge and discharge on power grid, it is concluded that charge and discharge control strategy proposed in this paper can optimize the operation of the power grid and realize win-win situation of the user and the power grid with the time-of-use electricity pricing mechanism.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Xiaomin Xu ◽  
Dongxiao Niu ◽  
Yan Li ◽  
Lijie Sun

Considering that the charging behaviors of users of electric vehicles (EVs) (including charging time and charging location) are random and uncertain and that the disorderly charging of EVs brings new challenges to the power grid, this paper proposes an optimal electricity pricing strategy for EVs based on region division and time division. Firstly, by comparing the number of EVs and charging stations in different districts of a city, the demand ratio of charging stations per unit is calculated. Secondly, according to the demand price function and the principle of profit maximization, the charging price between different districts of a city is optimized to guide users to charge in districts with more abundant charging stations. Then, based on the results of the zonal pricing strategy, the time-of-use (TOU) pricing strategy in different districts is discussed. In the TOU pricing model, consumer satisfaction, the profit of power grid enterprises, and the load variance of the power grid are considered comprehensively. Taking the optimization of the comprehensive index as the objective function, the TOU pricing optimization model of EVs is constructed. Finally, the nondominated sorting genetic algorithm (NSGA-II) is introduced to solve the above optimization problems. The specific data of EVs in a municipality directly under the Central Government are taken as examples for this analysis. The empirical results demonstrate that the peak-to-valley ratio of a certain day in the city is reduced from 56.8% to 43% by using the optimal pricing strategy, which further smooth the load curve and alleviates the impact of load fluctuation. To a certain extent, the problem caused by the uneven distribution of electric vehicles and charging stations has been optimized. An orderly and reasonable electricity pricing strategy can guide users to adjust charging habits, to ensure grid security, and to ensure the economic benefits of all parties.


2020 ◽  
Vol 1549 ◽  
pp. 042147
Author(s):  
Wen Wen ◽  
Lifang Wang ◽  
Mengdi Zhu ◽  
Zhou Peng ◽  
Fangling Yao

Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 2
Author(s):  
Elisavet Koutsi ◽  
Sotirios Deligiannis ◽  
Georgia Athanasiadou ◽  
Dimitra Zarbouti ◽  
George Tsoulos

During the last few decades, electric vehicles (EVs) have emerged as a promising sustainable alternative to traditional fuel cars. The work presented here is carried out in the context of the Horizon 2020 project MERLON and targets the impact of EVs on electrical grid load profiles, while considering both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation modes. Three different charging policies are considered: the uncontrolled charging, which acts as a reference scenario, and two strategies that fall under the umbrella of individual charging policies based on price incentive strategies. Electricity prices along with the EV user preferences are taken into account for both charging (G2V) and discharging (V2G) operations, allowing for more realistic scenarios to be considered.


2019 ◽  
Vol 115 ◽  
pp. 01001
Author(s):  
Zhen Hu ◽  
Ding Wang ◽  
Yangwu Shen ◽  
Daojun Chen ◽  
Yongyan Liu

The purpose of voltage stability prevention and control strategy is to minimize the impact of expected accidents on the whole power grid while ensuring safe power supply. In this paper, it is expected that the accident has a large impact on the system voltage and makes the voltage margin of each node low. in order to not only adjust the node voltage, but also reduce the disturbance impact, a voltage stability prevention and control strategy is proposed based on the characteristic analysis.


2020 ◽  
Vol 11 (2) ◽  
pp. 32
Author(s):  
Megan Zielke ◽  
Adria Brooks ◽  
Gregory Nemet

This work explores the impact of the rapid growth of plug-in electric vehicles on wholesale electricity pricing. Understanding electric vehicle impacts on the grid is important for the mid- and long-range planning of transmission owners, distribution utilities, and regional system operators. Current research in electric vehicles considers technology adoption projections and the infrastructure needed to support electric vehicle growth. This work considers how projected electric vehicle growth in the State of Wisconsin would impact the transmission congestion and wholesale electricity pricing in the year 2030. We find minimal impacts on electricity prices (<2%) even under rapid growth assumptions, in which EVs comprise 5% of all vehicles in 2030. The increases seen in hourly locational marginal prices (LMPs) due to projected electric vehicle growth are, on average, less than those seen in annual changes of historic electricity prices in Wisconsin. We do find moderate, relative increases in congestion prices (+16–32%), which could provide an opportunity to align electric vehicle charging schedules with times of low transmission congestion.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jingang Han ◽  
Xiong Zhou ◽  
Song Lu ◽  
Pinxuan Zhao

The smart grid and electric vehicles (EVs) are widely used all over the world. As the key role, the Vehicle-to-Grid (V2G) has been attracting increasing attention. The bidirectional grid-connected AC/DC converter is one of the indispensable parts in the V2G system, which can realize bidirectional power flow and meet the power quality requirements for grid. A three-phase bidirectional grid-connected AC/DC converter is presented in this paper for V2G systems. It can be used to achieve the bidirectional power flow between EVs and grid, supply reactive power compensation, and smooth the power grid fluctuation. Firstly, the configuration of V2G systems is introduced, and the mathematical model of the AC/DC converter is built. Then, for bidirectional AC/DC converters, the grid voltage feedforward decoupling scheme is applied, and the analysis of PI control strategy is proposed and the controller is designed. The system simulation model is established based on MATLAB/Simulink, and the experiment platform of the bidirectional grid-connected converter for V2G is designed in lab. The simulation and experiment results are shown, and the results evaluate the effectiveness of the model and the performance of the applied control strategy.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1067
Author(s):  
Youming Cai ◽  
Zheng Li ◽  
Xu Cai

It is important to reduce the impact of the high penetration of wind power into the electricity supply for the purposes of the security and stability of the power grid. As such, the inertia capability of wind farms has become an observation index. The existing control modes cannot guarantee the wind turbine to respond to the frequency variation of the grid, hence, it may lead to frequency instability as the penetration of wind power gets much higher. For the stability of the power grid, a simple and applicable method is to realize inertia response by controlling wind farms based on a high-speed communication network. Thus, with the consideration of the inertia released by a wind turbine at its different operating points, the inertia control mechanism of a doubly-fed wind turbine is analyzed firstly in this paper. The optimal exit point of inertia control is discussed. Then, an active power control strategy for wind farms is proposed to reserve the maximum inertia under a given power output constraint. Furthermore, turbines in a wind farm are grouped depending on their inertia capabilities, and a wind farm inertia control strategy for reasonable extraction of inertia is then presented. Finally, the effectiveness of the proposed control strategy is verified by simulation on the RT-LAB (11.3.3, OPAL-RT TECHNOLOGIES, Montreal, Quebec, Canada) platform with detailed models of the wind farm.


Author(s):  
Mr. Akshay A. Khandare

Abstract: The increasing mobility of electric vehicles has inspired vehicle growth to power grid technology. Such as vehicle to grid technology allows to transfer the power from the electric vehicle battery to the power grid. This enable speak load shaving, load leveling, voltage regulation, and improved stability of the power system. To develop the vehicle to grid technology requires a specialized EV battery charger, which permits the bi-directional energy transfer between the power grid and the electric vehicle battery. There is a specific control strategy used for a bi-directional battery charger. The proposed control strategy is used for charge and discharge battery of EV. The charger strategy has two parts: 1) Bidirectional AC-DC Converter in two-way Communication System. 2) Bidirectional DC-DC Buck-Boost Converter. There are two modes of operation for a bidirectional ac-dc converter: for G2V, rectifying mode is used, and for V2G, inverter mode is used. The suggested charge strategy not only allows for two-directional power flow but also provides power quality management of the power grid. Fuzzy logic controller (FLC) transforms linguistic control topology evaluations knowledge into an automated control topology using FLC. The FLC is more stable, has less overshoot, and responds quickly. The operation of a standard PI controller and a FLC was compared in this study using MATLAB and Simulink, and different time domain characteristics were compared as toshow that the FLC had a smaller overshoot and a faster response than the PI controller. Keywords: Bi-directional AC-DC converter, bi-directional DC-DC Buck-Boost converter, electric vehicles (EVs), on-board battery charger (OBC), grid to vehicle (G2V), vehicle to grid (V2G).


Sign in / Sign up

Export Citation Format

Share Document