High Strain Rate Superplastic Deformation Behavior of TiNP/2014Al Composite

2010 ◽  
Vol 97-101 ◽  
pp. 1633-1636
Author(s):  
Hui E Hu ◽  
Liang Zhen

TiNP/2014Al composite was prepared by powder metallurgy method with a reinforcement volume fraction of 15%. High strain rate superplastic deformation behavior of the TiNP/2014Al composite was investigated by tensile tests conducted at 818 K with different strain rates range from 1.7×100 to 1.7×10-3 s-1, DSC, OM, TEM and SEM. It is shown that a maximum elongation of 351% is achieved at 818 K and 3.3×10-1 s-1. The curve of value can be divided into two stages with the variation of strain rate and the critical strain rate is 10-1 s-1. Plastic deformation of the TiNP/2014Al composite at 818 K and 3.3×10-1 s-1 is conducted at an almost constant maximum value of flow stress. High strain rate superplastic deformation mechanism of the TiNP/2014Al composite deformed at 818 K with the strain rate of 3.3×10-1 s-1 is grain boundary sliding accommodation mechanism plus liquid phase helper accommodation mechanism.

2013 ◽  
Vol 27 (19) ◽  
pp. 1341022 ◽  
Author(s):  
FEI LIN ◽  
JIE LI ◽  
HONGWEI ZHAO ◽  
LULU SUN ◽  
ZHITONG CHEN ◽  
...  

The grain size of as-extruded AZ31 magnesium alloy was refined by isothermal annealing pretreatment through orthogonal experiment. By using the Gleeble-3800 thermal simulator, the compression superplasticity of as-extruded AZ31 magnesium alloy was studied. The high strain rate superplastic compression was realized. The process parameters of the superplastic compression were established and the mechanism of the superplastic deformation was analyzed. The effects of deformation temperature and strain rate on the superplastic flow were investigated. The results indicated that at 250°C–300°C and strain rate at 1×10-2 s -1, the true strain values were all more than 2.03. As the temperature was 300°C and the strain rate was 1×10-2 s -1–1×10 s -1, the true strain values were all more than 2.18. The results showed that the as-extruded AZ31 magnesium alloy being refined presented good compression superplasticity. The main mechanism for the superplastic compressive deformation of the as-extruded AZ31 magnesium alloy was grain-boundary sliding, meanwhile, dynamic recrystallization also played a harmonious role during the superplastic deformation.


2004 ◽  
Vol 471-472 ◽  
pp. 692-696
Author(s):  
Xiao Jing Xu ◽  
Lan Cai ◽  
Seock Sam Kim

An ingot aluminum alloy (Al-Cu-Mg-Ti-Sr) with high strength and high strain rate superplasticity has been successfully developed through a conventional manufacture route consisting of casting, heat treatment, hot extrusion with a low extrusion rate of only 10:1, hot-rolling and further cold-rolling, which is cost effective and suitable for large volume production industries. The tensile test result showed the alloy possesses not only a high ultimate strength of 513.85MPa at room temperature, but also a good high strain rate superplasticity with the tensile elongation of 174~224%, the flow stress of 17.1~33.9MPa and the strain rate sensitivity m-value of 0.174~0.293 in the initial strain rate of 3.16×10-2~1.0×10-1s-1 and at the temperature of 748K~793K. Differential scanning calorimeter (DSC) analysis showed that the superplastic deformation has no relationship with liquid phase. Scanning electron microscopy (SEM) analysis of fracture surface and surface showed that the superplastic deformation results from fine grain boundary sliding and dislocation slip.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1074 ◽  
Author(s):  
Shao-You Zhang ◽  
Cheng Wang ◽  
Long-Qing Zhao ◽  
Pin-Kui Ma ◽  
Jia-Wang Song ◽  
...  

The high-temperature superplastic deformation behavior of rolled Mg-8Al-2Sn (AT82) and Mg-8Al-1Sn-1Zn (ATZ811) alloys were investigated in this study. During tensile deformation at 573 K, no obvious grain growth occurred in both alloys, because of the high-volume fraction of second phases located at grain boundaries. Meanwhile, texture weakening was observed, suggesting that grain boundary sliding (GBS) is the dominant superplastic deformation mechanism, which agreed well with the strain rate sensitivity (m) and the activation energy (Q) calculations. The microstructural evolution during tensile deformation manifested that there were more and larger cavities in AT82 than ATZ811 during high-temperature tensile deformation. Therefore, superior superplasticity was found in the ATZ811 alloy that presented a tensile elongation of ~510% under a strain rate of 10−3 s−1 at 573 K, in contrast to the relatively inferior elongation of ~380% for the AT82 alloy. Meanwhile, good tensile properties at ambient temperature were also obtained in ATZ811 alloy, showing the ultimate tensile strength (UTS) of ~355 MPa, yield strength (YS) of ~250 MPa and elongation of ~18%. Excellent mechanical performance at both ambient and elevated temperatures can be realized by using economical elements and conventional rolling process, which is desirable for the industrial application of Mg alloy sheets.


2002 ◽  
Vol 2002.51 (0) ◽  
pp. 253-254
Author(s):  
Makoto TAKAGI ◽  
Toru IMURA ◽  
Yoshihito KAWAMURA ◽  
Akihisa INOUE

2008 ◽  
Vol 584-586 ◽  
pp. 159-163 ◽  
Author(s):  
Evgeny V. Naydenkin ◽  
Ilya V. Ratochka

The stress-strain curves at high strain rate superplasticity were analyzed for Ti-6Al-4V and aluminum 1420 industrial alloys in ultra-fine grained state produced by severe plastic deformation. For both alloys the observed strengthening effect can be caused by grain growth under the above mentioned conditions resulting to increase of grain boundary sliding resistance. In the case of aluminum alloy the grain recovery can be accompanied by significant change in phase composition which is also stimulates the recrystallization process.


2020 ◽  
Vol 394 (1) ◽  
pp. 2000153
Author(s):  
Felipe Pedro da Costa Gomes ◽  
Juciklécia da Silva Reinaldo ◽  
Antônio Henrique Venâncio Rodrigues ◽  
Thatiana Cristina Pereira Macedo ◽  
Bismarck Luiz Silva ◽  
...  

2012 ◽  
Vol 562-564 ◽  
pp. 688-692 ◽  
Author(s):  
Deng Yue Sun ◽  
Jing Li ◽  
Fu Cheng Zhang ◽  
Feng Chao Liu ◽  
Ming Zhang

The influence of the strain rate on the plastic deformation of the metals was significant during the high strain rate of loading. However, it was very difficult to obtain high strain rate data (≥ 104 s-1) by experimental techniques. Therefore, the finite element method and iterative method were employed in this study. Numerical simulation was used to characterise the deformation behavior of Hadfield steel during explosion treatment. Base on experimental data, a modified Johnson-Cook equation for Hadfield steel under various strain rate was fitted. The development of two field variables was quantified during explosion hardening: equivalent stress and strain rates.


Sign in / Sign up

Export Citation Format

Share Document