Characterization of Bi2212 Superconductor Bulk Samples by Digital Image Processing

2014 ◽  
Vol 975 ◽  
pp. 128-133
Author(s):  
Antonio Renato Bigansolli ◽  
Tessie Gouvêa da Cruz ◽  
Francisco Romário de Souza Machado ◽  
Durval Rodrigues Jr.

The use of superconductors of high critical temperatures in applied superconductivity leads to higher operation temperatures and economy of cryogenic fluids. High temperature superconductor materials exhibits limited transport properties due to grain boundary weak-links and anisotropy on the critical currents. The texturing development in these superconductors decreases in an efficient way the number of high-angle grain boundaries, increasing the values of critical current densities (Jc). In this research the size grain distribution characterization of Bi2212 superconductor bulk samples heat treated under the influence of an applied external magnetic field of 5T was carried out combining processing and images analysis obtained by SEM and statistical methodologies. The objective is to investigate influence of an external magnetic field applied during the heat treatment profiles on the texturing of Bi2Sr2CaCu2O8+δ (Bi2212) bulk by using complementary analytical techniques.

2016 ◽  
Vol 869 ◽  
pp. 29-34
Author(s):  
Antonio Renato Bigansolli ◽  
T.G. da Cruz ◽  
Durval Rodrigues Jr.

The use of superconductors of high critical temperatures in applied superconductivity leads to higher operation temperatures and economy of cryogenic fluids. High temperature superconductor materials exhibits limited transport properties due to grain boundary weak-links and anisotropy on the critical currents. The texturing development in these superconductors decreases in an efficient way the number of high-angle grain boundaries, increasing the values of the critical current densities. Several quantitative analysis methods have been developed to study the morphologic and topologic characteristics improving our understanding of structural parameters. In this work the grain size distribution characterization of Bi2Sr2CaCu2O8+δ Bi2212 superconductor bulk samples heat treated under the influence of an external applied magnetic field of 5T was carried out using a processing technique and analysis of images. The analyzed images were obtained by SEM in the c axis direction. All samples showed similar microstructures on both cases, but with the use of an external applied magnetic field during the heat treatments the average grain size decreased.


Author(s):  
A. Brown ◽  
K. Krishnan ◽  
L. Wayne ◽  
P. Peralta ◽  
S. N. Luo ◽  
...  

Global and local microstructural weak links for spall damage were investigated using 3-D characterization in polycrystalline (PC) and multicrystalline (MC) copper samples, respectively. All samples were shocked via flyer-target plate experiments using a laser drive at low pressures (2–6 GPa). The flyer plates measured approximately 500 μm thick and 8 mm in diameter and the target plates measured approximately 1000 μm thick and 10 mm in diameter. Electron Backscattering Diffraction (EBSD) and optical microscopy were used to determine to presence of voids and relate them to the surrounding microstructure. Statistics on the strength of grain boundaries (GBs) was conducted by analyzing PC samples and collecting the misorientation across GBs with damage present, and it was found that a misorientation range of 25–50° is favorable for damage. Statistics were also taken of copper PC samples that had undergone different heat treatments and it was found that although the 25–50° range is less dominant, it is still favorable for damage nucleation. Removal of initial plastic strain via heat treatments and an increase in Σ3 CSL boundaries, indicative of strong annealing twins, also led to an increased amount of transgranular damage. 3-D X-ray tomography data were used to investigate the shape of the voids present in untreated, as received and heat treated samples. It was found that the as received sample contained a higher amount of “disk”, or, “sheet-like” voids indicative of intergranular damage, whereas the heat treated samples had a higher fraction of spherical shaped voids, indicative of transgranular damage. MC samples were used to study microstructural weak links for spall damage because the overall grain size is much larger than the average void size, making it possible to determine which GBs nucleated damage. Simulations and experimental analysis of damage sites with large volumes indicate that high Taylor factor mismatches with respect to the crystallographic grain GB normal is the primary cause for the nucleation of damage at a GB interface and a low Taylor factor along the shock direction in either grain drives void growth perpendicular to the GB. Cases where experimental results show damage and simulation results show no damage are attributed to the presence of an intrinsic microstructural weak link, such as an incoherent twin boundary.


During last decade, considerable efforts were made to achieve coherent emission from stacks of many Josephson junctions. It is known that strong emission from a junction in the presence of external magnetic field appears at the so-called Fiske steps in the IV-characteristic at voltages which correspond to frequencies of geometrical resonances. However, it is possible to obtain resonant steps in long junctions without external magnetic field. The periodical movement of fluxons is excited due to some disorder in the distribution of critical currents along junctions. The so-called zero-field steps are formed in the IV-curve due to the interaction of fluxons with oscillations of voltage at Josephson frequencies. We investigated numerically IV-characteristics and the dependence of the average square of ac voltage at the end of the stack of two long Josephson junctions on the average voltage. Junctions interacted inductively with each other. We introduced not only the Gaussian distribution of critical currents along junctions but also the Gaussian distribution of coefficients of the interaction between junctions (mutual inductances). Zero-field steps in the IV-characteristic were found at voltages which corresponded to frequencies of in-phase collective modes in the stack as well as to frequencies of uncoupled junctions. Zero-field steps appeared in the hysteretic region of the IV-curve. There appeared also jumps of voltage from the resistive branch to the zero-field step. We showed that there existed distributions of mutual inductances along junctions which provided jumps to voltages at which the average square of ac voltage at the end of the stack (which is proportional to power of emission) was larger than that for the stack with the uniform distribution of mutual inductances.


2015 ◽  
Vol 799-800 ◽  
pp. 120-124 ◽  
Author(s):  
Mary Donnabelle L. Balela ◽  
Lalaine M. Dulin ◽  
Erica A. Garcia ◽  
M. Janelle H. Tica

Cobalt-nickel (Co-Ni) nanowires were formed by electroless deposition in ethylene glycol under external magnetic field. The effects of initial Co (II) and Ni (II) concentration on the surface and morphology of the synthesized nanowires were investigated by x-ray diffraction (XRD) and scanning electron microscope (SEM) respectively. An increase in the Co (II) concentration resulted in increase in diameter of the nanowires. However, the length of nanowires was observed to decrease. Higher Co (II) concentration resulted in a mixture of hexagonal close-packed and face-centered cubic Co-Ni nanowires. X-ray diffraction revealed that crystal growth occurred when the nanowires are annealed at 653 K for 10h.


1995 ◽  
Vol 31 (6) ◽  
pp. 4130-4132
Author(s):  
D. Hogenboom ◽  
A. Widom ◽  
C. Vittoria
Keyword(s):  

2015 ◽  
Vol 107 (10) ◽  
pp. 103110 ◽  
Author(s):  
Dongzi Liu ◽  
Kangxin Mo ◽  
Xidong Ding ◽  
Liangbing Zhao ◽  
Guocong Lin ◽  
...  

Author(s):  
C. A. Aguirre ◽  
Q. Martins ◽  
Jose Barba

In the present work we studied the effect of the nature of the contacts, by which a weak external current is applied, in an anisotropic superconducting rectangle, on the magnetization, magnetic susceptibility, density of the Cooper pairs and  (magnetic field for which the first vortices entry on the sample). The contacts are simulates by the  parameter, and the anisotropy is present in sections with different critical temperatures modeling for  function, both in the Ginzburg-Landau formalis. Also, the sample is embebbed in an external magnetic field . We established how the nature of the contacts and the presence of a weak Lorentz Force, influence the magnetic response and the vortex state of the sample.


Sign in / Sign up

Export Citation Format

Share Document