Design and Analysis of Cooling Cabinet for Vaccine Storage

2014 ◽  
Vol 984-985 ◽  
pp. 1180-1183
Author(s):  
N. Saravanan ◽  
R. Rathnasamy ◽  
V. Ananchasivan

Solar powered adsorption refrigeration system is renewable source in the future energy demands and more useful for off-grid area. In this paper a mathematical model was developed to investigate the performance of a cooling cabinet of a activated carbon-ammonia adsorption refrigeration system, and a new effective method about the refrigeration studies. A brief thermodynamic study of the cooling cabinet is carried out and the effect of operating parameters such as temperature, pressure, cooling effect of the system is numerically analyzed. The impact of solar intensity on performance of the system is significant. The cooling cabinet model is completely analysied for varies capacity and it is able to calculate the cooling cabinet coil length .The designed mathematical model is analyzed by the use of coolpack software and the results are compared with ansys software. It is observed that the system operate more efficient while maximum solar intensity and the cooling effect. Key words: Solar, Adsorption Refrigeration, Mathematical model, Analysis, Solar intensity.

2020 ◽  
Vol 45 (11) ◽  
pp. 9735-9745
Author(s):  
Nitin D. Banker ◽  
Devendra Dandotiya ◽  
Sai Vamsi Reddy Morthala ◽  
Mahesh Gaddam ◽  
Sridhar Kakileti

2014 ◽  
Vol 700 ◽  
pp. 37-41
Author(s):  
A Min Ji ◽  
Tian Tian ◽  
Bo Ning Tang

This paper discusses the importance of per-cooling vegetable and fruit, establishes a mathematical model of the solar adsorption refrigeration system collector bed. It applies activated carbon - methanol as working pairs, takes solar vacuum tube-water cooled collector bed for refrigerating, adsorption temperature and adsorption rate versus time are calculated , draw the corresponding curve figure. Analyses solar adsorption refrigeration system performance and puts forward the improvement direction.


2017 ◽  
Vol 08 (10) ◽  
pp. 611-631 ◽  
Author(s):  
Tao Zeng ◽  
Hongyu Huang ◽  
Noriyuki Kobayashi ◽  
Jun Li

2013 ◽  
Vol 860-863 ◽  
pp. 223-229
Author(s):  
Yan Ling Liu ◽  
Xue Zeng Shi

This paper presents the simulation of a solar-powered continuous adsorption air-conditioning system with the working pair of silica gel and water. In order to make the adsorption system more suitable to use solar energy to supply cooling continuously during daytime, a new adsorption system without refrigerant valves is being developed in SJTU recently. By using this system, the problem such as pressure drop along refrigerant circuit can be resolved. The frequent switches of refrigerant valves can also be omitted. The daytime long simulation results (ranging from 6:00 to 18:00) demonstrate that the solar-powered adsorption system can supply a fairly steady cooling output all the time. Based on the results, parametric study is also undertaken to optimize the design.


2015 ◽  
Vol 1092-1093 ◽  
pp. 109-112
Author(s):  
Xiang Bo Song ◽  
Xu Ji ◽  
Ming Li ◽  
Jia Xing Liu ◽  
Shao Lin Yin

A new solar solid adsorption refrigeration system is established in this paper, and the variation relationship between the adsorbent bed temperature and pressure with time are analyzed, and the effects of adsorbent bed condensing pressure on the system performance is researched. Results show that, under the same working conditions, when the condensing pressure is 39 kPa, the daily ice-making capacity of system reach to 5.5 kg with the refrigerating capacity of 2.26 MJ; And when the condensing pressure is 63 kPa, the ice-making capacity of system is only for 3 kg with the refrigerating capacity of 1.48 MJ; The refrigerating capacity of the former is 1.5 times of the latter.


2021 ◽  
Vol 40 (1) ◽  
pp. 39-49
Author(s):  
Michael John ◽  
Cuthbert Kimambo ◽  
Ole Nydal ◽  
Joseph Kihedu

An experimental study on the performance of calcium chloride-ammonia adsorption system is described. A single bed water cooled condenser adsorption refrigerator prototype, which utilises calcium chloride-ammonia pair has been developed and tested in the laboratory. Experiments have been conducted for desorption temperatures of 100 °C with desorption time varying from 1 to 4 hours. An electric tape heater and a timer were used to perform the experiments. The adsorption temperature profile, adsorption rate and prototype performance have been analysed and discussed. The tested heating and desorption temperature of 100 °C and heating and desorption time of 1 to 4 hours was able to create a cooling effect of the cold chamber of the prototype of between -0.8 to 8.3 °C, which is adequate for vaccine storage requirement of 2 to 8 °C. The estimated Coefficient of Performance of the system ranges between 0.025 and 0. 076.


2020 ◽  
pp. 108-115 ◽  
Author(s):  
Vladimir P. Budak ◽  
Anton V. Grimaylo

The article describes the role of polarisation in calculation of multiple reflections. A mathematical model of multiple reflections based on the Stokes vector for beam description and Mueller matrices for description of surface properties is presented. On the basis of this model, the global illumination equation is generalised for the polarisation case and is resolved into volume integration. This allows us to obtain an expression for the Monte Carlo method local estimates and to use them for evaluation of light distribution in the scene with consideration of polarisation. The obtained mathematical model was implemented in the software environment using the example of a scene with its surfaces having both diffuse and regular components of reflection. The results presented in the article show that the calculation difference may reach 30 % when polarisation is taken into consideration as compared to standard modelling.


Sign in / Sign up

Export Citation Format

Share Document