Tribological and Mechanical Behavior Study of Al6061-TiB2 Metal Matrix Composites Using Stir Casting

2014 ◽  
Vol 984-985 ◽  
pp. 200-206 ◽  
Author(s):  
S. Suresh ◽  
N. Shenbaga Vinayaga Moorthi ◽  
C. Emmy Prema

Metal matrix composites, produced by stir casting method, have more advantages when compared to other methods. Aluminium alloy Al6061 was reinforced with various percentages of TiB2 particles by using high energy stir casting method. The characterization was performed through EDS and SEM. The mechanical behaviours like hardness, tensile and wear were investigated. Wear experiments were conducted by using a pin-on-disc wear tester at varying load to evaluate the tribological property of Al6061-TiB2 composite. The wear mechanism was studied through SEM. In this study revealed that the addition of TiB2 improves the wear resistance of aluminium composites. The results showed that the mechanical properties, such as tensile strength, wear resistance and hardness increased by the percentage of TiB2 present in the samples when compared with base aluminium alloy.

Todays composite material have gained more popularity due to their improved properties over the conventional materials. In the present paper, insitu composites were fabricated via chemical reaction between molten aluminium alloy and halide salt KBF4 with cryolite at 8000C by stir casting method. The microstructures of the composite containing 3 and 5 wt. % of AlB2 reinforcement phase have been compared with the unreinforced aluminium alloy. The microstructure analysis shows clean AlB2 particles uniformly distributed throughout the matrix. With the increase in the AlB2 reinforcement, insitu composite show less agglomeration and recovery of boron is more when compared to the unmixed halide salt in the fabrication of inistu composite


2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2015 ◽  
Vol 813-814 ◽  
pp. 230-234 ◽  
Author(s):  
T.S.A. Suryakumari ◽  
S. Ranganathan ◽  
P. Shankar

The present investigation involves studying the mechanical properties of the fabricated aluminium 7075 hybrid metal matrix composites reinforced with various weight % of SiC and Al2 O3 particulates by stir casting method. The Al 7075 hybrid metal matrix composites specimen were fabricated using L9 orthogonal array. The mechanical properties like Brinell Harness (BHN), Rockwell Hardness (HRC) and impact loads were experimented. The mechanical properties like hardness and impact loads have improved with the increase in weight percentage of SiC and Al2O3 particulates in the hybrid aluminium matrix.


Aluminium compound materials saw to be the best choice with its exceptional utmost of sketching out the novel material for gaining desired properties. Aluminium alloy based composite materials are expanding broad affirmation for aeronautics application in perspective on their high strength combined with low density or light weight. In the present concerned work, an endeavour is put to prepare and focus the tensile and compressive behaviour of Aluminium alloy LM13 and Solid Glass Microspheres (SGM) particulates Composite with perspective to get better properties with light weight. Stir casting method was used to manufacture these aluminium alloy LM13 and SGM particulate composite with 10 v%, 15 v% and 20 v% of reinforcement. Based on ASTM benchmarks, the composite samples were prepared and tested, and the results obtained were then analysed. A notable improvement was perceived in the strength of tensile and compressive capacities of the developed metal matrix composites (MMC).


2016 ◽  
Vol 854 ◽  
pp. 1-9 ◽  
Author(s):  
M. Manojkumar ◽  
R. Shanmuga Prakash

As auto manufacturers strive to meet imposed fuel economy and emissions regulations while producing vehicles with the quality and features that consumer expect, the industry needs to rely on advancements made in the field of metal matrix composites. The efforts of combining or replacing metals with the use of advanced metal matrix composites (MMCs) not only reduce weight, but can also improve safety, reliability and efficiency. A hybrid MMC was developed for the cylinder liner of advanced diesel engines. Composites of Al-6063 aluminium alloy reinforced with, fly ash particulate containing 10% and graphite particulate containing 5, 10 and 15 % were produced by stir casting. The wear and frictional properties of the casted hybrid metal matrix composites were investigated by performing dry sliding wear test using a pin-on-disc wear tester. The investigation was done to find the influence of applied load, sliding speed and sliding distance on wear rate, as well as the coefficient of friction during wearing process. From the investigation, it is evident that wear resistance of Al-6063 is increased while adding the fly ash and graphite reinforcement content. The results were compared with the existing liner material. From this comparative study the Al-6063/fly ash/graphite hybrid metal matrix composite can be the considered as an alternative material for existing cylinder material.


Sign in / Sign up

Export Citation Format

Share Document