Study on Mechanical Properties of Al 7075 Hybrid Metal Matrix Composites

2015 ◽  
Vol 813-814 ◽  
pp. 230-234 ◽  
Author(s):  
T.S.A. Suryakumari ◽  
S. Ranganathan ◽  
P. Shankar

The present investigation involves studying the mechanical properties of the fabricated aluminium 7075 hybrid metal matrix composites reinforced with various weight % of SiC and Al2 O3 particulates by stir casting method. The Al 7075 hybrid metal matrix composites specimen were fabricated using L9 orthogonal array. The mechanical properties like Brinell Harness (BHN), Rockwell Hardness (HRC) and impact loads were experimented. The mechanical properties like hardness and impact loads have improved with the increase in weight percentage of SiC and Al2O3 particulates in the hybrid aluminium matrix.

2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2014 ◽  
Vol 592-594 ◽  
pp. 705-710 ◽  
Author(s):  
S. Dhanalakshmi ◽  
N Mohanasundararaju ◽  
P.G. Venkatakrishnan

A hybrid Al7075 metal matrix composites have been fabricated through liquid metallurgy route (Stir Casting method) using Al2O3 and B4C as reinforcement materials. The effect of weight percentage of reinforcement materials on mechanical properties of the composites have been studied by varying the weight percentage of Al2O3 as 3, 6, 9, 12 and 15% while keeping constant weight percentage of B4C (3%). The as-cast microstructure, tensile strength, micro and macro hardness of the fabricated hybrid composites have been studied. The mechanical properties of the prepared composites were increased with increasing the weight percentage of the reinforcement in the composite. The maximum tensile strength, micro-hardness and macro-hardness of 309 MPa, 140 VHN, and 112 BHN, respectively, were obtained for a hybrid Al7075 matrix composite containing 15% Al2O3 and 3% B4C.


2014 ◽  
Vol 984-985 ◽  
pp. 326-330
Author(s):  
T.M. Chenthil Jegan ◽  
D. Ravindran ◽  
M. Dev Anand

Metal Matrix Composites possesses high mechanical properties compared to unreinforced materials. Aluminium Matrix Composites (AMC) is attracted in the emerging world because of its low cost, less weight and enhanced mechanical properties. In the present study the enhancement in mechanical properties like hardness and tensile strength of AMCs by reinforcing AA 6061 matrix with silicon carbide (SiC) and boron carbide (B4C) particles are analyzed. By enhanced stir casting method aluminium matrix was reinforced with boron carbide particulates and silicon carbide particulates with the various weight percentage of 2.5 %,5% and 7.5%.The tensile strength and hardness was found to increase with the increase in wt% of the reinforcement. From the analysis it is observed that the mechanical property of B4C reinforced AMC is significantly good compared to SiC reinforced AMC.


2020 ◽  
Vol 979 ◽  
pp. 34-39
Author(s):  
K. Sudhindra Srinivas ◽  
M. Murali Mohan

The epidemic adoption of particulate metal matrix composites (MMCs) for engineering applications has been delay by the high cost of producing components of even minimally complex shape. The aluminum-based composites find its applications widely in transport, aerospace, marine, automobile and mineral processing industries, owing to their improved strength, stiffness and wear resistance properties. This paper, presents the overview of the addition of different reinforcements to aluminium alloy. The reinforcements are added to the Al7075 by using stir casting method. Effect of these reinforcements like Titanium carbide (TiC) and silicon (Si) influencing on the mechanical properties like tensile strength, hardness was studied. Research relevant to these factors which influence particles distribution were noticed by conducting the experimental studies of Al7075 hybrid composites.The mechanical properties and the microstructure of Al–TiC-Si metal matrix composite has shown the significant improvement in Hardness and Tensile strength, with increase in TiC and Si particles in weight percentage of composites.


Author(s):  
Rajesh Rajesh ◽  
Sathyashankara Sharma ◽  
M. C. Gowrishankar

Al 7075 is a good choice as a matrix material to prepare metal matrix composites (MMCs) owing to its better specific tensile strength and toughness. Among different types of the recently introduced composite materials, particles reinforced MMC and in particular aluminium as matrix material have been found to have enormous industrial applications like automotive and aerospace sectors. In the present study, mechanical properties of Al 7075-eutectoid steel powder metal matrix composites is assessed in age-hardened and as-cast conditions. The heat treatment processes are carried out in atmospheric condition. Eutectoid steel (water hardenable tool steel - W1grade) reinforced aluminium 7075 is an attempt to investigate the role of micro-constituent phases on property alterations of metal matrix composites. As an economical and promising route for MMC, liquid stir casting technique is used to reinforce synthesised steel powder in the matrix of Al 7075. Heat treatment is performed as a tool to mould and improve the required mechanical properties as per the requirements. Eutectoid steel powder is selected as the reinforcement material since it is believed to be composed of lamellar pearlite with ferrite and cementite as alternate layers in as-cast condition, serving as micro-hybrid reinforcement to improve hardness and strength. In this work four different proportions of steel powder (2, wt.% 4 wt.% and 6 wt.%) reinforced composites are prepared by a two-stage stir casting process. Age-hardening treatment is given to the samples and analysed critically and compared with alloy matrix for different properties such as tensile strength, hardness and toughness. Results have shown significant improvement in the ultimate tensile strength and hardness of the composites after aging treatment. The 4 wt.% steel powder reinforced composite has shown better results compared to other composites.


Author(s):  
Ch Hima Gireesh ◽  
Koona Ramji ◽  
K.G Durga Prasad ◽  
Budumuru Srinu

In the present technological environment, the aerospace industry needs cutting-edge materials not only to meet the requirements such as lower weight and higher values of strength and stiffness, but also to protect against electromagnetic interference. In this article, an attempt has been made to prepare Al6061 hybrid metal matrix composites reinforced with varying percentages of SiC, Al2O3, and fly ash particulates through a stir-casting route. As per ASTM standards, various tests have been conducted to know the density, tensile strength, yield strength, and hardness. Simultaneously, all the prepared composites are tested for electromagnetic interference (EMI) shielding effectiveness (SE) under the X band frequency with the help of a vector network analyzer. In order to identify the composite possessing good mechanical properties, as well as shielding effectiveness, a TOPSIS methodology has been employed in this work. The present study reveals that the proposed hybrid composite contains 5% of each reinforcement material which shows better mechanical properties as well as good shielding effectiveness.


Sign in / Sign up

Export Citation Format

Share Document