Performance, Combustion and Emission Analysis for Various Combustion Chamber Geometry

2014 ◽  
Vol 984-985 ◽  
pp. 950-956
Author(s):  
S. Arumugam ◽  
N. Vasudevan ◽  
P. Saravanan ◽  
K. Pitchandi

The experimental work investigates performance, combustion and emission analysis for various combustion chamber geometry such as combustion, brake thermal efficiency, specific fuel consumption, and emission characteristics. The various combustion chamber namely Spherical chamber (SC), Toroidal chamber (TC), Re-entrant chamber (RC) were fitted in a 4.4 kW single cylinder air cooled Compression ignition (CI) engine and tests were conducted with standard diesel. The investigated of the combustion chamber geometry characteristics on combustion, performance and emissions. This investigation shows brake thermal efficiency for Re-entrant chamber and Toroidal chamber is slightly higher than Spherical chamber. And lower specific fuel consumption of Toroidal chamber, Re-entrant chamber than that of Spherical chamber. The enhancement in reduction of carbon monoxide, hydrocarbon is recorded for Re-entrant chamber compared to the Toroidal chamber and Spherical chamber. Oxides of nitrogen are reduced for Re-entrant chamber and Toroidal chamber than that of Spherical chamber. Combustion characteristics improved for Re-entrant chamber compared to Spherical chamber. The cylinder pressure for Re-entrant chamber and Toroidal chamber is higher than that of Spherical chamber. Also obtained maximum heat release rate for Re-entrant chamber than Toroidal chamber and Spherical chamber.

Author(s):  
H. M. DHARMADHIKARI ◽  
PULI RAVI KUMAR ◽  
S. SRINIVASA RAO

In recent years, much research has been carried to find suitable alternative fuel to petroleum products. In the present investigation experimental work has been carried out to analyze the performance and emissions characteristics of a single cylinder compression ignition DI engine fuelled with the blends of mineral diesel and biodiesel at the different injection pressures. The optimal value of the injection pressure was observed as 200 bar in the range of 180 to 220 bar. The performance parameters evaluated were brake thermal efficiency, break specific fuel consumption and the emissions measured were carbon monoxide (CO), carbon dioxide (CO2), hydrocarbon (HC), and oxides of nitrogen (NOx). The results of experimental investigation with biodiesel blends with diesel are compared with that of diesel. The results indicated that the CO emissions are slightly less, HC emissions were also observed to be less for B10 and B20, and NOx emissions decreased by 39 % for B10 and 28 % for B20 compared with B100. The brake thermal efficiency of the engine decreased around 6% for all blends in comparison with diesel, and the break specific fuel consumption was slightly more for B10 and B20.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
Murugan Kuppusamy ◽  
Thirumalai Ramanathan ◽  
Udhayakumar Krishnavel ◽  
Seenivasan Murugesan

The effect of thermal-barrier coatings (TBCs) reduces fuel consumption, effectively improving the engine efficiency. This research focused on a TBC with a thickness of 300 µm insulating the combustion chamber of a direct ignition (DI) engine. The piston crown, inlet and exhaust-valve head were coated using air-plasma-spray coating. Ceramic powder materials such as molybdenum (Mo) and aluminum oxide titanium dioxide (Al2O3-TiO2) were used. A performance test of the engine with the coated combustion chamber was carried out to investigate the brake power, brake thermal efficiency, volumetric efficiency, brake specific fuel consumption and air-fuel ratio. Also, an emission-characteristic test was carried out to investigate the emissions of unburned hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NO, NO2, NO3) and smoke opacity (SO). The results reveal that the brake thermal efficiency and brake specific fuel consumption show significant increases because of these coating materials. The effect of the Al2O3-TiO2 coating significantly reduces the HC and CO engine emissions.


Author(s):  
P.S. Kumar ◽  
S.A. Kannan ◽  
A. Kumar ◽  
K.A.V. Geethan

In this study, for the first time analysis of a low heat rejection engine was carried out along with the addition of oxidation inhibitors. If the combustion chamber components of the engine such as piston, cylinder head, and inlet and outlet valves are insulated with a thermal barrier material, then the engine will be referred as low heat rejection engine. In this study yttria stabilized zirconia was coated on the combustion chamber components for a thickness of about 150 microns. Then the analysis of performance parameters such as brake thermal efficiency and specific fuel consumption and emission characteristics such as emission of carbon monoxide, hydrocarbon and nitrogen oxide was carried out in single cylinder four stroke diesel engine with electrical loading using diesel and pongamia methyl ester as the fuels. The major problem associated with the usage of biodiesels and low heat rejection engine is the increased NOX emission than the normal engine operated with the diesel. This problem has been overcome by the usage of oxidation inhibitors such as ethyl hexyl nitrate (EHN), tert-butyl hydroquinone (TBHQ). The results showed that addition of oxidation inhibitors leads to increase in brake thermal efficiency, reduced specific fuel consumption and reduced NOX emission.


2015 ◽  
Vol 787 ◽  
pp. 722-726 ◽  
Author(s):  
Sozhi Arumugam ◽  
Pitchandi Kasivisvanathan ◽  
M. Arventh ◽  
P. Maheshkumar

This paper presents the experimental work to investigate the effect of Re-entrant and Toroidal combustion chambers in a DICI Engine. The two combustion chambers namely Re-entrant combustion chamber (RCC) and Toroidal combustion chamber (TCC) were fitted in a 4.4 kW single cylinder Direct Injection Compression Ignition (DICI) engine and tests were conducted with diesel. The influences of the combustion chamber geometry characteristics on combustion, performance and emissions characteristics have been investigated. This investigation shows the peak pressure of re-entrant chamber is higher than that of toroidal chamber. The heat release rate and brake thermal efficiency for re-entrant chamber are slightly higher than that of toroidal chamber. Specific fuel consumption is lower for toroidal chamber than that of re-entrant chamber. The enhancement in reduction of carbon monoxide, hydrocarbon is observed for Re-entrant chamber compared to the Toroidal chamber. Oxides of nitrogen are reduced for toroidal chamber than that of re-entrant chamber.


2011 ◽  
Vol 142 ◽  
pp. 103-106
Author(s):  
Wen Ming Cheng ◽  
Hui Xie ◽  
Gang Li

This paper discusses the brake specific fuel consumption and brake thermal efficiency of a diesel engine using cottonseed biodiesel blended with diesel fuel. A series of experiments were conducted for the various blends under varying load conditions at a speed of 1500 rpm and 2500 rpm and the results were compared with the neat diesel. From the results, it is found that the brake specific fuel consumption of cottonseed biodiesel is slightly higher than that of diesel fuel at different engine loads and speeds, with this increase being higher the higher the percentage of the biodiesel in the blend. And the brake thermal efficiency of cottonseed biodiesel is nearly similar to that of diesel fuel at different engine loads and speeds. From the investigation, it is concluded that cottonseed biodiesl can be directly used in diesel engines without any modifications, at least in small blending ratios.


Author(s):  
O. K. Fadele ◽  
M. B. Usman ◽  
O. C. Ariyo ◽  
U. U. Emeghara ◽  
D. O. Adelani ◽  
...  

In this study, an electrically aerated stove was developed using locally available materials. The performance of the stove was evaluated by utilizing briquettes produced from pyrolyzed jatropha shell and Eucalyptus camadulensis wood shavings. Thermal parameters such as thermal efficiency, power output, specific fuel consumption and burning rate were determined. The mean values obtained for the thermal efficiency, power output, specific fuel consumption and burning rate were 7.62 %, 1685 J/s, 0.2377 g/g, 330.90 g/hr respectively. The performance of the briquette stove was considered to not be suboptimal. The thermal efficiency can further be improved by proper insulation and adequate utilization of the heat generated in the combustion chamber.


2021 ◽  
Author(s):  
Naveen Rana ◽  
Harikrishna Nagwan ◽  
Kannan Manickam

Abstract Indeed, the development of alternative fuels for use in internal combustion engines has become an essential requirement to meet the energy demand and to deal with the different problems related to fuel. The research in this domain leads to the identification of adverse fuel properties and for their solution standard limits are being defined. This paper outlines an investigation of performance and combustion characteristics of a 4-stroke diesel engine using different cymbopogon (lemongrass) - diesel fuel blends. 10% to 40% cymbopogon is mixed with diesel fuel and tested for performance characteristics like brake specific fuel consumption and brake thermal efficiency. To obtain emission characteristics smoke density in the terms of HSU has been measured. In result, it has observed that there is an increase of 5% in brake thermal efficiency and 16.33% decrease in brake specific fuel consumption. Regarding emission characteristics, a 12.9% decrease in smoke emission has been found.


The diesel fuel is most extensively used fossil fuel in automotives and a single major source of hazardous environment pollutant across the globe. As of late, the exploration thinks about distinguished that plant based biodiesel are turning into a promising option sustainable fuel and the consumable/non-eatable oils and creature fats can be utilized feed-stock in arrangement of biodiesel, in light of the fact that its chemical properties practically like fossil diesel fuel, non-poisonous, clean consuming and inexhaustible source. In this work, the performance analysis and emission characteristics of single cylinder, 4-stroke, and water cooled diesel engine was carried-out using Palm oil methyl ester as biodiesel alternative to diesel fuel. Experimental tests have been conducted with range of engine loads using palm oil methyl ester (PME) and its diesel blends with biodiesel in the ratio of 10:90 (B10), 20:80 (B20), and 30:70 (B30), 40:60 (B40), PME 100% (B100) and petro-diesel 100% by volume with and without antimony tin oxide (ATO) additive. In this research work brake power (BP), brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), fuel consumption (FC) are considered as engine performance characteristics and carbon monox ide (CO), hydro carbons (HC), oxides of nitrogen (NOx) are considered as emission characteristics. The experimental results revealed that B10 blend of biodiesel has comparable brake thermal efficiency as diesel. B10 has lowest and B100 has highest BSFC, FC among all the biodiesel blends and biodiesel has lower CO emission, lower HC emission and moderately higher NOx emission when compared with diesel. B10 has shown comparable performance as diesel and it can be considered as alternative to diesel fuel.


2020 ◽  
Vol 10 (2) ◽  
pp. 183-190
Author(s):  
Viet Dung Tran ◽  
Anh Tuan Le ◽  
Anh Tuan Hoang

As a rule, the highest permissible sulfur content in the marine fuel must drop below 0.5% from 1 January 2020 for global fleets. As such, ships operating in emission control areas must use low sulfur or non-sulfur fuel to limit sulfur emissions as a source of acid rain. However, that fact has revealed two challenges for the operating fleet: the very high cost of ultra-low sulfur diesel (ULSD) and the installation of the fuel conversion system and the ULSD cooling system. Therefore, a solution that blends ULSD and biodiesel (BO) into a homogeneous fuel with properties equivalent to that of mineral fuels is considered to be significantly effective. In the current work, an advanced ultrasonic energy blending technology has been applied to assist in the production of homogeneous ULSD-BO blends (ULSD, B10, B20, B30, and B50 with blends of coconut oil methyl ester with ULSD of 10%, 20%, 30% and 50% by volume) which is supplied to a small marine diesel engine on a dynamo test bench to evaluate the power and torque characteristics, also to consider the effect of BO fuel on specific fuel consumption exhaust gas temperature and brake thermal efficiency. The use of the ultrasonic mixing system has yielded impressive results for the homogeneous blend of ULSD and BO, which has contributed to improved combustion quality and thermal efficiency. The results have shown that the power, torque, and the exhaust gas temperature, decrease by approximately 9%, 2%, and 4% respectively with regarding the increase of the blended biodiesel rate while the specific fuel consumption and brake thermal efficiency tends to increase of around 6% and 11% with those blending ratios.


2021 ◽  
Vol 9 (4A) ◽  
Author(s):  
İlker Örs ◽  
◽  
Murat Ciniviz ◽  
Bahar Sayin Kul ◽  
Ali Kahraman ◽  
...  

In this study, it was aimed to investigate the effects of a diesel-biodiesel blend (B20) and a diesel-biodiesel-bioethanol blend (BE5) on combustion parameters in addition to engine performance and exhaust emissions compared with diesel fuel. Parameters included in the evaluation was brake specific fuel consumption, brake thermal efficiency, CO, CO2, HC, NOx, smoke opacity emissions and finally cylinder pressure, heat release rate, ignition delay, some key points of the combustion phases such as start of ignition, start of combustion, CA50 and CA90 and combustion duration. Engine tests were conducted at different injection pressures of 170 bar, 190 bar, which is the original injection pressure, and 220 bar by the engine being loaded by 25, 50, 75 and 100% for the assessment of engine performance and exhaust emissions. For combustion evaluation, the data obtained at 1400 rpm, maximum torque-speed, and 2800 rpm, maximum power-speed were used, while the injection pressures were set to 170, 190 and 220 bar under full load condition. According to test results, the better performance characteristics, exhaust emissions and combustion behaviour of engine were obtained with the use of BE5 at high injection pressure. So, BE5 fuel improved brake specific fuel consumption by about 7% and brake thermal efficiency by about 6% compared to B20. In addition, while the emission values of BE5 gave better results than diesel fuel, it reduced the NOx and smoke emissions of B20 by approximately 1.4% and 6.4% respectively. Moreover, it has achieved a reduction in smoke emission of up to 45% compared to diesel fuel.


Sign in / Sign up

Export Citation Format

Share Document