Preparation and Characterization of Dialdehyde Nanocellulose

2014 ◽  
Vol 988 ◽  
pp. 79-83 ◽  
Author(s):  
Wei Gong Li ◽  
Qing Hua Xu

Dialdehyde nanocellulose (DANC) was prepared by periodate selective oxidation of secondary hydroxyl group of nanocrystalline cellulose (NCC). NCC and DANC samples were characterized by FT-IR, XRD and conductimetric titration. Aldehyde groups were introduced during the process of sodium periodate oxidation, which was confirmed by the FT-IR spectra. The aldehyde group content increased with the increase of sodium periodate. The crystallinity index (CrI) and crystallite size of the samples were continuously decreased with the increase of the oxidant.

2011 ◽  
Vol 236-238 ◽  
pp. 1415-1419 ◽  
Author(s):  
Yun Hui Xu ◽  
Zhao Fang Du

In order to develop cotton fabric underwear with the health care function, the cotton fiber was modified with the collagen (CMCF) using periodate oxidation method. The aldehyde groups on the glucose chains of the oxidized cotton cellulose were reacted with the amino groups of collagen to obtain the CMCF, and the oxidized cellulose was crosslinked with collagen in aqueous acetic acid media. The effects of collagen concentration, treatment time, reaction temperature, pH value of solution and periodate concentration on the amount of collagen crosslinked on cotton fiber were respectively discussed, and the optimal reaction technology was obtained. XPS characterization of the modified cotton fiber showed a characteristic peak about 400.0–405.0 eV corresponding to collagen, which indicated that the collagen was combined on the surface of cotton fiber. The mechanical properties of the collagen modified cotton fiber were improved. The resulting CMCF is a new natural ecological fiber and has the extensive application as a carrier for the controlled release of drugs.


2016 ◽  
Vol 13 (2) ◽  
pp. 244-252
Author(s):  
Baghdad Science Journal

In this paper, some chalcone derivatives (C1, C2) were synthesized based on the reaction of equal amount of substituted acetophenone and substituted banzaldehyde in basic medium. Oxazine and thiazine derivatives were prepared from the reaction of chalcones (C1-C2) with urea and thiourea respectively in a basic medium. Pyrazole derivatives were prepared based on the reaction of chalcones with hydrazine mono hydrate or phenyl hydrazine in the presence of glacial acetic acid as a catalyst. The new synthesized compounds were identified using various physical techniques like1 H-NMR and FT-IR spectra.


2014 ◽  
Vol 633-634 ◽  
pp. 30-33 ◽  
Author(s):  
Min Hu ◽  
Yu Hao Ma ◽  
Zong Jie Li ◽  
Wei Min Kang ◽  
Bo Wen Cheng

In this research, a kind of nonwoven composite used for the absorption of heavy mental ions has been made. The composite was made of two layers of ES thermal bonded nonwovens as the protective layers and the PAN-amidoxime nanofibers which are prepared through the modification of electrospun PAN nanofibers as the interlayer. The composition was achieved by the ultrasonic bonding method. After the composition the PAN nanofibers were modified by grafting the amidoxime group to PAN. The results of FT-IR spectra and FE-SEM indicated that nitrile groups in PAN were partly converted into amidoxime groups and there were no serious cracks on the surface of PAN-amidoxime nanofibers. The results show that the amidoxime groups have been proved to be grafted to the PAN nanofibers with the percent grafting of 81.6%.


2012 ◽  
Vol 9 (3) ◽  
pp. 1613-1622 ◽  
Author(s):  
Farouq E. Hawaiz ◽  
Mohammad K. Samad

A number of 3-[4-(benzyloxy)-3-(2-Chlorophenylazo)-phenyl]-5-(substituted-phenyl)-1-substituted-2-pyrazolines( 4a-j) and (5a-j) have been synthesized by diazotization of 2-chloroaniline and its coupling reaction with 4-hydroxy acetophenone, followed by benzyloxation of the hydroxyl group to give the substrate [4-benzyloxy-3-(2-chlorophenylazo)-acetophenone (1)].The prepared starting material (1) has been reacted with different substituted benzaldehydes to give a new series of chalcone derivatives 1-[(4-benzyloxy)-3-(2-chloro-phenylazo)-phenyl]-3-(substituted phenyl)-2-propen-1-one (3a-j), in high yields and in a few minutes, and the later compounds were treated with hydrazine hydrate according to Michael addition reaction to afford a new biolological active target compounds (4a-j) and (5a-j). Furthermore, The structures of the newly synthesized compounds were confirmed by FT-IR,13C-NMR,13C-DEPT &1H-NMR spectral data. The chalcone and pyrazoline derivatives were evaluated for their anti bacterial activity againstEscherichia colias gram negative andStaphylococcus aureusas gram positive, the results showed significant activity against both types of bacteria.


2019 ◽  
Vol 56 ◽  
pp. 142-151
Author(s):  
Hassan Shokry ◽  
Marwa Elkady ◽  
Hesham Hamad

Nano sized ZrO2 nanopowder was synthesized by precipitation method. Phase transformation was investigated as a function of calcination temperature by XRD, SEM , and FT-IR. It is indicated that the thermal anneling from 400 to 800 °C resulted in increasing the average crystallite size from 12 to 20 nm. As the calcination temperature increased, the crystallite size and the agglomeration were increased. The increase in the monoclinic content and grain growth are caused by the calcination temperatures even calcination at 800 °C.


2013 ◽  
Vol 440 ◽  
pp. 19-24 ◽  
Author(s):  
Jun Yan Yao ◽  
Loogn Tak Lim ◽  
Yu Jie Li

A feasible and effective method of thermal hydrolysis to prepare poly (lactic acid) (PLA) oligomers with different controlled molecular weight from PLA is presented in this paper. The thermal hydrolytic reaction was carried out by immerging PLA resin pellets in boiling distilled water for a certain period of time. Ester groups in PLA chains are hydrolytically degraded in the presence of water and thermal, so PLA oligomers with different molecular weight were prepared. The structures and properties of PLA oligomers were characterized by FT-IR, GPC, DSC, etc. The results showed that thermal hydrolytic reaction could effectively reduce the molecular weight of PLA, which declines with the increase of the thermal hydrolytic reaction time. Meanwhile, the content of terminal hydroxyl group, glass transition temperature, melting point of PLA oligomers prepared from thermal hydrolytic reactions exhibit gradual changes with the extension of the thermal hydrolytic time.


2018 ◽  
Vol 4 (5) ◽  
pp. 475-477 ◽  
Author(s):  
K. Prema Latha ◽  
C. Prema ◽  
S. Meenakshi Sundar

The present work reports the synthesis and characterization of cobalt oxide nanoparticles. Microwave oven method was used for synthesizing cobalt oxide nanoparticles. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, photoluminescence (PL) and scanning electron microscope (SEM). The prepared samples show poor crystalline nature so that the samples were calcined at 300 °C for 1 hr. The calcined samples were characterized for further changes in its morphology. XRD identifies the sample is in Co3O4 phase with face-centered cubic structure. Debye-Scherer formula was used to calculate the average crystallite size of the annealed sample and it was found to be 7 to 28 nm. In addition to crystallite size, specific surface area, dislocation density and microstrain are calculated using XRD. Williamson-Hall plot was used to calculate the size and strain. FT-IR spectrum shows two stretching bands at 660 and 550 cm−1 which confirm the functional group present in the cobalt oxide nanoparticles. In optical absorption studies, a blue shift in the energy band gap reveals the quantum confinement effect. Photoluminescence spectra shows emission peak in the visible region.


Sign in / Sign up

Export Citation Format

Share Document