Newly Determined Crystal Structure and Optical Property of the Intermetallic NiAl and Ni3Al Alloys: A First-Principles Computer Simulated Investigation

2014 ◽  
Vol 989-994 ◽  
pp. 220-223
Author(s):  
Chao Xu ◽  
Dong Chen

Using quantum mechanics plane-wave approach based on the density functional theory, the lattice constants of NixAl at different Ni concentrations (x=1, 3) are predicted. Optical properties such as dielectric function, energy loss function and reflectivity are also investigated. Results show that with the increase of Ni constituent, the location of the peak in loss function moves to the lower energy region, but the peak height increases. At 0eV, the reflectivity increases rapidly with the Ni concentration. The reflectivity of NiAl and Ni3Al are pronounced in the UV region (not in the visible light region). The dielectric properties, namely the real and imaginary parts of the dielectric function, changed significantly with Ni constituent.

2012 ◽  
Vol 571 ◽  
pp. 292-295
Author(s):  
Ben Hai Yu ◽  
Chao Xu ◽  
Dong Chen

We report ab initio calculations of the structural, elastic and optical properties of the compound LaB6 as a function of pressure. The computation is based on the density functional theory in combination with the generalized gradient approximation functional. The calculated lattice constants and elastic moduli are compared with the theoretical results and a good agreement is found. LaB6 can retain its mechanical stability in the pressure range of 0-20GPa. Besides, the frequency-dependent dielectric function, absorption coefficient and loss function of LaB6 are also obtained. The calculated static dielectric function is 8.8 at 0GPa and 5GPa. The computed results should be testified by experiments.


2011 ◽  
Vol 415-417 ◽  
pp. 2288-2291
Author(s):  
Chang Chun Chen ◽  
Xiao Ju Geng ◽  
Ying Bin Li ◽  
Ben Hai Yu ◽  
Dong Chen

Based on the density functional theory, the plane-wave pseudo-potential method is performed to investigate the structural properties of α-Si3N4. The ground-state lattice parameters (i.e. lattice constants and cell volume) agree quite well with the experimental data. From the band structure calculation, we found that the stability of α-Si3N4is due mainly to the interaction among the Si-s, Si-p and N-p states. The imaginary part of the dielectric function has a sharp peak at 8.2eV. For the real part of the dielectric function, the highest peak locates at 6.5eV. Our calculated results are in good agreement with the experimental data and previous theoretical values. Therefore, the calculated results may provide useful information for further investigations of α-Si3N4.


Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1404
Author(s):  
Yunfei Yang ◽  
Changhao Wang ◽  
Junhao Sun ◽  
Shilei Li ◽  
Wei Liu ◽  
...  

In this study, the structural, elastic, and thermodynamic properties of DO19 and L12 structured Co3X (X = W, Mo or both W and Mo) and μ structured Co7X6 were investigated using the density functional theory implemented in the pseudo-potential plane wave. The obtained lattice constants were observed to be in good agreement with the available experimental data. With respect to the calculated mechanical properties and Poisson’s ratio, the DO19-Co3X, L12-Co3X, and μ-Co7X6 compounds were noted to be mechanically stable and possessed an optimal ductile behavior; however, L12-Co3X exhibited higher strength and brittleness than DO19-Co3X. Moreover, the quasi-harmonic Debye–Grüneisen approach was confirmed to be valid in describing the temperature-dependent thermodynamic properties of the Co3X and Co7X6 compounds, including heat capacity, vibrational entropy, and Gibbs free energy. Based on the calculated Gibbs free energy of DO19-Co3X and L12-Co7X6, the phase transformation temperatures for DO19-Co3X to L12-Co7X6 were determined and obtained values were noted to match well with the experiment results.


2010 ◽  
Vol 25 (6) ◽  
pp. 1030-1036 ◽  
Author(s):  
Pengxian Lu ◽  
Zigang Shen ◽  
Xing Hu

To investigate the effects of substituting Ag and Sb for Pb on the thermoelectric properties of PbTe, the electronic structures of PbTe and AgPb18SbTe20 were calculated by using the linearized augmented plane wave based on the density-functional theory of the first principles. By comparing the differences in the band structure, the partial density of states (PDOS), the scanning transmission microscope, and the electron density difference for PbTe and AgPb18SbTe20, we explained the reason from the aspect of electronic structures why the thermoelectric properties of AgPb18SbTe20 could be improved significantly. Our results suggest that the excellent thermoelectric properties of AgPb18SbTe20 should be attributed in part to the narrowing of its band gap, band structure anisotropy, the much extrema and large DOS near Fermi energy, as well as the large effective mass of electrons. Moreover, the complex bonding behaviors for which the strong bonds and the weak bonds are coexisted, and the electrovalence and covalence of Pb–Te bond are mixed should also play an important role in the enhancement of the thermoelectric properties of the AgPb18SbTe20.


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 31968-31975 ◽  
Author(s):  
Shuai Zhao ◽  
Liguo Gao ◽  
Chunfeng Lan ◽  
Shyam S. Pandey ◽  
Shuzi Hayase ◽  
...  

In this work, we present a detailed first-principles investigation on the stoichiometric and oxygen-deficient structures of double perovskites, Sr2BMoO6 (B = Mg, Co and Ni), using the density functional theory (DFT) method.


2019 ◽  
Vol 27 (4) ◽  
pp. 420-430
Author(s):  
D. P. Krylov

Zircon β-factors have been calibrated against temperature for isotopic substitutions of 18O/16O and 30Si/28Si. Calculations were performed using the density functional theory (DFT) with the “frozen phonon” approach. The deduced geometric parameters of the zircon unit cell, and the phonon frequencies calculated, agree well with the experimental data. The results are expressed by the cubic polynomials on x = 106/T(K)2: 1000lnβzrn(18O/16O) = 9.83055x – 0.19499x2 + 0.00388x3;  1000lnβzrn(30Si/28Si) = 7.89907x – 0.17978x2 + 0.00377x3. The expressions deduced can be utilized to construct geothermometers if combined with β-factors of coexisting phases. New calibrations of quartz-zircon are given. The new values of 1000lnβzrn and the estimated isotope fractionation factors between quartz and zircon (1000lnβqtz–1000lnβzrn) deviate considerably from previously used experimental, empirical, and semi-empirical calibration of the isotopic equilibrium.


2021 ◽  
Vol 871 ◽  
pp. 254-263
Author(s):  
Zhan Cheng ◽  
Guan Xing Zhang ◽  
Wei Min Long ◽  
Svitlana Maksymova ◽  
Jian Xiu Liu

The first-principles calculations by CASTEP program based on the density functional theory is applied to calculate the cohesive energy, enthalpy of formation, elastic constant, density of states and Mulliken population of Ag3Sn、AgZn3 and Ag5Zn8. Furthermore, the elastic properties, bonding characteristics, and intrinsic connections of different phases are investigated. The results show that Ag3Sn、AgZn3 and Ag5Zn8 have stability structural, plasticity characteristics and different degrees of elastic anisotropy; Ag3Sn is the most stable structural, has the strongest alloying ability and the best plasticity. AgZn3 is the most unstable structure, has the worst plasticity; The strength of Ag5Zn8 is strongest, AgZn3 has the weakest strength, the largest shear resistance, and the highest hardness. Ag5Zn8 has the maximum Anisotropy index and Ag3Sn has the minimum Anisotropy index. Ag3Sn、AgZn3 and Ag5Zn8 are all have covalent bonds and ionic bonds, the ionic bonds decrease in the order Ag3Sn>Ag5Zn8>AgZn3 and covalent bonds decreases in the order Ag5Zn8>Ag3Sn>AgZn3.


RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25900-25911 ◽  
Author(s):  
Esmaeil Pakizeh ◽  
Jaafar Jalilian ◽  
Mahnaz Mohammadi

In this study, based on the density functional theory and semi-classical Boltzmann transport theory, we investigated the structural, thermoelectric, optical and phononic properties of the Fe2ZrP compound.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 100 ◽  
Author(s):  
Weiwei Wang ◽  
Dahuai Zheng ◽  
Mengyuan Hu ◽  
Shahzad Saeed ◽  
Hongde Liu ◽  
...  

Numerous studies have indicated that intrinsic defects in lithium niobate (LN) dominate its physical properties. In an Nb-rich environment, the structure that consists of a niobium anti-site with four lithium vacancies is considered the most stable structure. Based on the density functional theory (DFT), the specific configuration of the four lithium vacancies of LN were explored. The results indicated the most stable structure consisted of two lithium vacancies as the first neighbors and the other two as the second nearest neighbors of Nb anti-site in pure LN, and a similar stable structure was found in the doped LN. We found that the defects dipole moment has no direct contribution to the crystal polarization. Spontaneous polarization is more likely due to the lattice distortion of the crystal. This was verified in the defects structure of Mg2+, Sc3+, and Zr4+ doped LN. The conclusion provides a new understanding about the relationship between defect clusters and crystal polarization.


Sign in / Sign up

Export Citation Format

Share Document