Organic Robotics Based on Conducting Polymers

2012 ◽  
Vol 79 ◽  
pp. 87-93
Author(s):  
Hidenori Okuzaki

Free-standing films made of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) were prepared by casting water dispersion of its colloidal particles. Specific surface area, water vapor sorption, and electro-active polymer actuating behavior of the resulting films were investigated by means of sorption isotherm, and electromechanical analysis. It was found that the non-porous PEDOT/PSS film, having a specific surface area of 0.13 m2/g, sorbed water vapor of 1080 cm3(STP)/g, corresponding to 87 wt%, at relative water vapor pressure of 0.95. A temperature rise from 25 to 40 °C lowered sorption degree, indicative of an exothermic process, where isosteric heat of sorption decreased with increasing water vapor sorption and the value reached 43.9 kJ/mol, being consistent with the heat of water condensation (44 kJ/mol). Upon application of 10 V, the film underwent contraction of 2.4% in air at 50% relative humidity (RH) which significantly increased to 4.5% at 90% RH. The principle lay in desorption of water vapor sorbed in the film due to Joule heating, where electric field was capable of controlling the equilibrium of water vapor sorption.

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Maria Knadel ◽  
Lis Wollesen Jonge ◽  
Markus Tuller ◽  
Hafeez Ur Rehman ◽  
Peter Weber Jensen ◽  
...  

1987 ◽  
Vol 59 (2) ◽  
pp. 67-72
Author(s):  
Raina Niskanen ◽  
Väinö Mäntylahti

The specific surface area of 60 mineral soil samples estimated by water vapor adsorption at 20 % relative humidity ranged from 12.1 ± 3.6 to 225.1 ±18.4 m2/g. Clay (range 1—72 %) and organic carbon content (0.7—14.6 %) together explained 84 % of the variation in the surface area. The regression equation predicting the specific surface area of soil was surface area (m2/g) =2.69+ 1.23clay-% +8.69org.C-%.


Author(s):  
Pavel Kudryavtsev

The results of studies of the process of hydrated alumina homogeneous precipitation were presented in this work. The variants of this process are considered. The most convenient embodiment of this process is the precipitation of hydrated alumina from its salts with the use of auxiliary substances, such as urea. Urea hydrolysis allows a homogeneous precipitation process under the most mild conditions. It is shown that the process of hydrolytic precipitation in the aluminum salt-urea system proceeds according to the dissociative mechanism SN1. This article analyzes the regularities of precipitation of solid colloidal particles of hydrated metal oxides on the surface of various substrates. Two models of this process are proposed. The proposed α-model is a process of continuous nucleation of interaction centers, at random points of a free surface throughout the process. The proposed β-model provides for the instantaneous nucleation of these centers when they are randomly distributed over the entire surface of the substrate. Based on the proposed models, the average values of the following values are calculated: the thickness of the gel film; its roughness and specific surface area. The calculations carried out in the article showed that these parameters are universal functions of the degree of filling of the surface and do not depend on the specific model of the mechanism of the process. Studies have been conducted on the use of homogeneously precipitated aluminum hydroxide as a binder in the preparation of porous materials. The resulting materials have a developed specific surface area and porosity.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jin-Young Jung ◽  
Hye-Ryeon Yu ◽  
Se Jin In ◽  
Young Chul Choi ◽  
Young-Seak Lee

The surfaces of carbon molecular sieves (CMSs) were thermally fluorinated to adsorb water vapor. The fluorination of the CMSs was performed at various temperatures (100, 200, 300, and 400°C) to investigate the effects of the fluorine gas (F2) content on the surface properties. Fluorine-related functional groups formed were effectively generated on the surface of the CMSs via thermal fluorination process, and the total pore volume and specific surface area of the pores in the CMSs increased during the thermal fluorination process, especially those with diameters ≤ 8 Å. The water vapor adsorption capacity of the thermally fluorinated CMSs increased compared with the as-received CMSs, which is attributable to the increased specific surface area and to the semicovalent bonds of the C–F groups.


1984 ◽  
Vol 18 (1-2) ◽  
pp. 99-116 ◽  
Author(s):  
G. Zografi ◽  
M.J. Kontny ◽  
A.Y.S. Yang ◽  
G.S. Brenner

Sign in / Sign up

Export Citation Format

Share Document