Template synthesis and water vapor adsorption by micro- and mesoporous silica gels with high specific surface area

2015 ◽  
Vol 41 (2) ◽  
pp. 187-193 ◽  
Author(s):  
I. S. Puzyrev ◽  
E. P. Sobina ◽  
L. V. Adamova ◽  
M. I. Kodess ◽  
S. V. Medvedevskikh
1987 ◽  
Vol 59 (2) ◽  
pp. 67-72
Author(s):  
Raina Niskanen ◽  
Väinö Mäntylahti

The specific surface area of 60 mineral soil samples estimated by water vapor adsorption at 20 % relative humidity ranged from 12.1 ± 3.6 to 225.1 ±18.4 m2/g. Clay (range 1—72 %) and organic carbon content (0.7—14.6 %) together explained 84 % of the variation in the surface area. The regression equation predicting the specific surface area of soil was surface area (m2/g) =2.69+ 1.23clay-% +8.69org.C-%.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jin-Young Jung ◽  
Hye-Ryeon Yu ◽  
Se Jin In ◽  
Young Chul Choi ◽  
Young-Seak Lee

The surfaces of carbon molecular sieves (CMSs) were thermally fluorinated to adsorb water vapor. The fluorination of the CMSs was performed at various temperatures (100, 200, 300, and 400°C) to investigate the effects of the fluorine gas (F2) content on the surface properties. Fluorine-related functional groups formed were effectively generated on the surface of the CMSs via thermal fluorination process, and the total pore volume and specific surface area of the pores in the CMSs increased during the thermal fluorination process, especially those with diameters ≤ 8 Å. The water vapor adsorption capacity of the thermally fluorinated CMSs increased compared with the as-received CMSs, which is attributable to the increased specific surface area and to the semicovalent bonds of the C–F groups.


2020 ◽  
Vol 38 (1-2) ◽  
pp. 60-76 ◽  
Author(s):  
Hong Zhao ◽  
Qiongfen Yu ◽  
Ming Li ◽  
Shengnan Sun

In this study, activated carbons without any chemical residue were prepared from walnut shells. The preparation method in a tube furnace included a pyrolysis carbonization process and a CO2 activation process. The influences of activation temperature and holding time on the specific surface area, yield, and pore structure were investigated. Adsorption performance of water vapor was also examined in details. Thermogravimetric analysis, N2 adsorption–desorption isotherm, and scanning electron microscope were used to characterize samples. The result shows that the activation energy at different heating rates varies from 30.16 to 64.86 kJ/mol. The highest water vapor adsorption capacity of the sample is 0.3824 g/g and it takes only 30 min to realize regeneration. And the maximum Brunauer–Emmett–Teller specific surface area of 1228 m2/g also occurs in this optimal preparation condition. CO2 physical activation method was found to have a positive effect on pore structure development of activated carbon for water vapor adsorption.


2019 ◽  
Vol 280 ◽  
pp. 133-143 ◽  
Author(s):  
Laura M. Henning ◽  
Diego Díaz Cubas ◽  
Maria G. Colmenares ◽  
Johannes Schmidt ◽  
Maged F. Bekheet ◽  
...  

2021 ◽  
Author(s):  
Qiang Chen ◽  
Kai Chen ◽  
Feng Yu ◽  
Aixia Guo ◽  
Siqing Zou ◽  
...  

Abstract High surface area mesoporous silica (SiO2) nanospheres has been considered an ideal material for the catalytic, adsorption and drug delivery. However, synthesis of ultra-high specific surface area mesoporous silica nanoparticles with well-defined sphere structure and small particle size (< 200 nm) is still challenging. Here, a two-stream confined jet impingement continuous microchannel reactor is proposed to produce novel mesoporous silica nanospheres (MSNs) with ultra-high specific surface area (SSA) and abundant worm-like meso-porosity. The as-obtained MSNs with worm-like mesoporous structure were produced with average particle diameter of 142 ~ 207 nm, high SSA of 1347 ~ 1854 m2/g, total pore volume of 0.86 ~ 1.23 cm3/g and pore diameter of 2.6 ~ 3.3nm. Moreover, the shear force field in the microchannel reactor on the mesoscopic structure of MSNs was simulated by mesoscopic kinetics. Additionally, MSNs was used as the silicon source to synthesize lithium silicate (Li4SiO4), which enhanced carbon dioxide (CO2) adsorption of 27.18 wt% at 650 ℃.


2019 ◽  
Vol 8 (1) ◽  
pp. 275-284 ◽  
Author(s):  
Yi Lin ◽  
Jinjia Xu ◽  
Bhosale Sanjana Sudhakar ◽  
Junjie Gu ◽  
Ruoyu Hong

Abstract Mesoporous silica microspheres were prepared by the polymerization-induced colloid aggregation (PICA) and pseudomorphic synthesis methods. The prepared microspheres have high specific surface area and MCM-41 type structure. In the PICA process, acidic silica sol was utilized as silica source and the effect of molar ration (formaldehyde/urea) was investigated. Moreover, the influences of reaction time and temperature were also studied. The specific surface area of porous and mesoporous silica microspheres were 186.4 m2/g and 900.4 m2/g, respectively. The materials were characterized by SAXS, FTIR, SEM, TEM and nitrogen sorption measurements. The prepared silica microspheres were functionalized by (3-Aminopropyl)triethoxysilane and then used to remove the lead from aqueous solution. The result indicates that the grafted silica microspheres have rapid adsorption capacity and good reproducibility. The adsorption data was fitted well with the Langmuir isotherm model, and the maximum adsorption capacities for MCM-41 silica microspheres were 102.7 mg/g.


Sign in / Sign up

Export Citation Format

Share Document